Cargando…
Using machine learning to quantify structural MRI neurodegeneration patterns of Alzheimer's disease into dementia score: Independent validation on 8,834 images from ADNI, AIBL, OASIS, and MIRIAD databases
Biomarkers for dementia of Alzheimer's type (DAT) are sought to facilitate accurate prediction of the disease onset, ideally predating the onset of cognitive deterioration. T1‐weighted magnetic resonance imaging (MRI) is a commonly used neuroimaging modality for measuring brain structure in viv...
Autores principales: | Popuri, Karteek, Ma, Da, Wang, Lei, Beg, Mirza Faisal |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7469784/ https://www.ncbi.nlm.nih.gov/pubmed/32614505 http://dx.doi.org/10.1002/hbm.25115 |
Ejemplares similares
-
β-amyloid PET harmonisation across longitudinal studies: Application to AIBL, ADNI and OASIS3
por: Bourgeat, Pierrick, et al.
Publicado: (2022) -
Quantifying brain metabolism from FDG‐PET images into a probability of Alzheimer's dementia score
por: Yee, Evangeline, et al.
Publicado: (2019) -
Using imputation to provide harmonized longitudinal measures of cognition across AIBL and ADNI
por: Shishegar, Rosita, et al.
Publicado: (2021) -
Differential Diagnosis of Frontotemporal Dementia, Alzheimer's Disease, and Normal Aging Using a Multi-Scale Multi-Type Feature Generative Adversarial Deep Neural Network on Structural Magnetic Resonance Images
por: Ma, Da, et al.
Publicado: (2020) -
Investigating the temporal pattern of neuroimaging-based brain age estimation as a biomarker for Alzheimer’s Disease related neurodegeneration
por: Taylor, Alexei, et al.
Publicado: (2022)