Cargando…

Caffeine reduces deficits in mechanosensation and locomotion induced by L-DOPA and protects dopaminergic neurons in a transgenic Caenorhabditis elegans model of Parkinson’s disease

CONTEXT: L-DOPA is the first-line drug for Parkinson’s disease (PD). However, chronic use can lead to dyskinesia. Caffeine, which is a known neuroprotectant, can potentially act as an adjunct to minimise adverse effects of L-DOPA. OBJECTIVES: This study determined changes in terms of neurodegenerati...

Descripción completa

Detalles Bibliográficos
Autores principales: Manalo, Rafael Vincent M., Medina, Paul Mark B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7470077/
https://www.ncbi.nlm.nih.gov/pubmed/32715838
http://dx.doi.org/10.1080/13880209.2020.1791192
_version_ 1783578514057854976
author Manalo, Rafael Vincent M.
Medina, Paul Mark B.
author_facet Manalo, Rafael Vincent M.
Medina, Paul Mark B.
author_sort Manalo, Rafael Vincent M.
collection PubMed
description CONTEXT: L-DOPA is the first-line drug for Parkinson’s disease (PD). However, chronic use can lead to dyskinesia. Caffeine, which is a known neuroprotectant, can potentially act as an adjunct to minimise adverse effects of L-DOPA. OBJECTIVES: This study determined changes in terms of neurodegeneration, locomotion and mechanosensation in Caenorhabditis elegans (Rhabditidae) strain UA57 overexpressing tyrosine hydroxylase (CAT-2) when treated with caffeine, L-DOPA or their combinations. MATERIALS AND METHODS: Neurodegeneration was monitored via fluorescence microscopy of GFP-tagged dopaminergic neurons in the head and tail regions of C. elegans. Meanwhile, mechanosensation and locomotion under vehicle (0.1% DMSO), L-DOPA (60 mM), caffeine (10 mM) or 60 mM L-DOPA + 10 or 20 mM caffeine (60LC10 and 60LC20) treatments were scored for 3 days (n = 20). RESULTS: L-DOPA (60 mM) reduced CEP and ADE neurons by 4.3% on day 3, with a concomitant decrease in fluorescence by 44.6%. This correlated with reductions in gentle head (−35%) and nose touch (−40%) responses, but improved locomotion (20–75%) compared with vehicle alone. CEP and ADE neuron counts were preserved with caffeine (10 mM) or 60LC10 (98–100%), which correlated with improved mechanosensation (10–23%) and locomotion (18–76%). However, none of the treatments was able to preserve PDE neuron count, reducing the basal slowing response. DISCUSSION AND CONCLUSIONS: Taken together, we show that caffeine can protect DAergic neurons and can reduce aberrant locomotion and loss of sensation when co-administered with L-DOPA, which can potentially impact PD treatment and warrants further investigation.
format Online
Article
Text
id pubmed-7470077
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Taylor & Francis
record_format MEDLINE/PubMed
spelling pubmed-74700772020-09-15 Caffeine reduces deficits in mechanosensation and locomotion induced by L-DOPA and protects dopaminergic neurons in a transgenic Caenorhabditis elegans model of Parkinson’s disease Manalo, Rafael Vincent M. Medina, Paul Mark B. Pharm Biol Original Article CONTEXT: L-DOPA is the first-line drug for Parkinson’s disease (PD). However, chronic use can lead to dyskinesia. Caffeine, which is a known neuroprotectant, can potentially act as an adjunct to minimise adverse effects of L-DOPA. OBJECTIVES: This study determined changes in terms of neurodegeneration, locomotion and mechanosensation in Caenorhabditis elegans (Rhabditidae) strain UA57 overexpressing tyrosine hydroxylase (CAT-2) when treated with caffeine, L-DOPA or their combinations. MATERIALS AND METHODS: Neurodegeneration was monitored via fluorescence microscopy of GFP-tagged dopaminergic neurons in the head and tail regions of C. elegans. Meanwhile, mechanosensation and locomotion under vehicle (0.1% DMSO), L-DOPA (60 mM), caffeine (10 mM) or 60 mM L-DOPA + 10 or 20 mM caffeine (60LC10 and 60LC20) treatments were scored for 3 days (n = 20). RESULTS: L-DOPA (60 mM) reduced CEP and ADE neurons by 4.3% on day 3, with a concomitant decrease in fluorescence by 44.6%. This correlated with reductions in gentle head (−35%) and nose touch (−40%) responses, but improved locomotion (20–75%) compared with vehicle alone. CEP and ADE neuron counts were preserved with caffeine (10 mM) or 60LC10 (98–100%), which correlated with improved mechanosensation (10–23%) and locomotion (18–76%). However, none of the treatments was able to preserve PDE neuron count, reducing the basal slowing response. DISCUSSION AND CONCLUSIONS: Taken together, we show that caffeine can protect DAergic neurons and can reduce aberrant locomotion and loss of sensation when co-administered with L-DOPA, which can potentially impact PD treatment and warrants further investigation. Taylor & Francis 2020-07-25 /pmc/articles/PMC7470077/ /pubmed/32715838 http://dx.doi.org/10.1080/13880209.2020.1791192 Text en © 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Article
Manalo, Rafael Vincent M.
Medina, Paul Mark B.
Caffeine reduces deficits in mechanosensation and locomotion induced by L-DOPA and protects dopaminergic neurons in a transgenic Caenorhabditis elegans model of Parkinson’s disease
title Caffeine reduces deficits in mechanosensation and locomotion induced by L-DOPA and protects dopaminergic neurons in a transgenic Caenorhabditis elegans model of Parkinson’s disease
title_full Caffeine reduces deficits in mechanosensation and locomotion induced by L-DOPA and protects dopaminergic neurons in a transgenic Caenorhabditis elegans model of Parkinson’s disease
title_fullStr Caffeine reduces deficits in mechanosensation and locomotion induced by L-DOPA and protects dopaminergic neurons in a transgenic Caenorhabditis elegans model of Parkinson’s disease
title_full_unstemmed Caffeine reduces deficits in mechanosensation and locomotion induced by L-DOPA and protects dopaminergic neurons in a transgenic Caenorhabditis elegans model of Parkinson’s disease
title_short Caffeine reduces deficits in mechanosensation and locomotion induced by L-DOPA and protects dopaminergic neurons in a transgenic Caenorhabditis elegans model of Parkinson’s disease
title_sort caffeine reduces deficits in mechanosensation and locomotion induced by l-dopa and protects dopaminergic neurons in a transgenic caenorhabditis elegans model of parkinson’s disease
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7470077/
https://www.ncbi.nlm.nih.gov/pubmed/32715838
http://dx.doi.org/10.1080/13880209.2020.1791192
work_keys_str_mv AT manalorafaelvincentm caffeinereducesdeficitsinmechanosensationandlocomotioninducedbyldopaandprotectsdopaminergicneuronsinatransgeniccaenorhabditiselegansmodelofparkinsonsdisease
AT medinapaulmarkb caffeinereducesdeficitsinmechanosensationandlocomotioninducedbyldopaandprotectsdopaminergicneuronsinatransgeniccaenorhabditiselegansmodelofparkinsonsdisease