Cargando…

Dual-source abdominopelvic computed tomography: Comparison of image quality and radiation dose of 80 kVp and 80/150 kVp with tin filter

OBJECTIVE: To compare the radiation dose and the objective and subjective image quality of 80 kVp and 80/150 kVp with tin filter (80/Sn150 kVp) computed tomography (CT) in oncology patients. METHODS: One-hundred-and-forty-five consecutive oncology patients who underwent third-generation dual-source...

Descripción completa

Detalles Bibliográficos
Autores principales: Choi, Seung Joon, Ahn, Su Joa, Park, So Hyun, Park, Seong Ho, Pak, Seong Yong, Choi, Jae Won, Shim, Young Sup, Jeong, Yu Mi, Kim, Bohyun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7470424/
https://www.ncbi.nlm.nih.gov/pubmed/32881876
http://dx.doi.org/10.1371/journal.pone.0231431
Descripción
Sumario:OBJECTIVE: To compare the radiation dose and the objective and subjective image quality of 80 kVp and 80/150 kVp with tin filter (80/Sn150 kVp) computed tomography (CT) in oncology patients. METHODS: One-hundred-and-forty-five consecutive oncology patients who underwent third-generation dual-source dual-energy CT of the abdomen for evaluation of malignant visceral, peritoneal, extraperitoneal, and bone tumor were retrospectively recruited. Two radiologists independently reviewed each observation in 80 kVp CT and 80/Sn150 kVp CT. Modified line-density profile of the tumor and contrast-to-noise ratio (CNR) were measured. Diagnostic confidence, lesion conspicuity, and subjective image quality were calculated and compared between image sets. The effective dose and size-specific dose estimate (SSDE) were calculated in the image sets. RESULTS: Modified line-density profile analysis revealed higher attenuation differences between the tumor and normal tissue in 80 kVp CT than in 80/Sn150 kVp CT (127 vs. 107, P = 0.05). The 80 kVp CT showed increased CNR in the liver (8.0 vs. 7.6) and the aorta (18.9 vs. 16.3) than the 80/Sn150 kVp CT. The 80 kVp CT yielded higher enhancement of organs (4.9 ± 0.2 vs. 4.7 ± 0.4, P<0.001) and lesion conspicuity (4.9 ± 0.3 vs. 4.8 ± 0.5, P = 0.035) than the 80/Sn150 kVp CT; overall image quality and confidence index were comparable. The effective dose was reduced by 45.2% with 80 kVp CT (2.3 mSv ± 0.9) compared to 80/Sn150 kVp CT (4.1 mSv ± 1.5). The SSDE was 7.4 ± 3.8 mGy on 80/Sn150 kVp CT and 4.1 ± 2.2 mGy on 80 kVp CT. CONCLUSIONS: The 80 kVp CT reduced the radiation dose by 45.2% in oncology patients while showing comparable or superior image quality to that of 80/Sn150 kVp CT for abdominal tumor evaluation.