Cargando…
Levels of human Rotaviruses and Noroviruses GII in urban rivers running through the city mirror their infection prevalence in populations
Enteric viruses exposed to water pose a huge threat to global public health and can lead to waterborne disease outbreaks. A sudden increase in enteric viruses in some water matrices also underpins the prevalence of corresponding waterborne diseases in communities over the same time period. However,...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Published by Elsevier B.V.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7470703/ https://www.ncbi.nlm.nih.gov/pubmed/32920413 http://dx.doi.org/10.1016/j.scitotenv.2020.142203 |
Sumario: | Enteric viruses exposed to water pose a huge threat to global public health and can lead to waterborne disease outbreaks. A sudden increase in enteric viruses in some water matrices also underpins the prevalence of corresponding waterborne diseases in communities over the same time period. However, few efforts have been focused on water matrices whose viral pollution may best reflect the clinical prevalence in communities. Here, a one-year surveillance of human enteric viruses including Enteroviruses (EnVs), Rotaviruses (HRVs), Astroviruses (AstVs), Noroviruses GII (HuNoVsGII) and Mastadenoviruses (HAdVs) in four representative water matrices: an urban river (UR) running through city, effluent from Wastewater Treatment Plant (EW), raw water for Urban Water Treatment Plant (RW), and tap water (TW) were performed by qPCR. The relationship between the virus detection frequency at each site and their prevalence in clinical PCR assay was further analyzed. We found that the detection frequencies of HRVs, HuNoVsGII, and AstVs in stools peaked in winter, while EnVs peaked in autumn. No EnVs occurred in EW, RW, or TW, but HuNoVsGII and AstVs occurred intensively in winter. For UR, all types of enteric viruses could be detected and the levels of acute gastroenteritis viruses (HRVs, HuNoVsGII, AstVs, and HAdVs) were highest in autumn or winter, whereas EnVs peaked in summer. In terms of correlation analyses, only HRVs and HuNoVsGII levels in UR showed a strong positive correlation with their prevalence in clinical stool samples. This study indicated that HRVs and HuNoVsGII levels in URs may mirror the local virus prevalence, thereby implying the possibility of revealing their local epidemiology by monitoring them in the URs. |
---|