Cargando…

DNA backbone interactions impact the sequence specificity of DNA sulfur-binding domains: revelations from structural analyses

The sulfur atom of phosphorothioated DNA (PT-DNA) is coordinated by a surface cavity in the conserved sulfur-binding domain (SBD) of type IV restriction enzymes. However, some SBDs cannot recognize the sulfur atom in some sequence contexts. To illustrate the structural determinants for sequence spec...

Descripción completa

Detalles Bibliográficos
Autores principales: Yu, Hao, Li, Jiayi, Liu, Guang, Zhao, Gong, Wang, Yuli, Hu, Wenyue, Deng, Zixin, Wu, Geng, Gan, Jianhua, Zhao, Yi-Lei, He, Xinyi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7470945/
https://www.ncbi.nlm.nih.gov/pubmed/32621606
http://dx.doi.org/10.1093/nar/gkaa574
_version_ 1783578676616495104
author Yu, Hao
Li, Jiayi
Liu, Guang
Zhao, Gong
Wang, Yuli
Hu, Wenyue
Deng, Zixin
Wu, Geng
Gan, Jianhua
Zhao, Yi-Lei
He, Xinyi
author_facet Yu, Hao
Li, Jiayi
Liu, Guang
Zhao, Gong
Wang, Yuli
Hu, Wenyue
Deng, Zixin
Wu, Geng
Gan, Jianhua
Zhao, Yi-Lei
He, Xinyi
author_sort Yu, Hao
collection PubMed
description The sulfur atom of phosphorothioated DNA (PT-DNA) is coordinated by a surface cavity in the conserved sulfur-binding domain (SBD) of type IV restriction enzymes. However, some SBDs cannot recognize the sulfur atom in some sequence contexts. To illustrate the structural determinants for sequence specificity, we resolved the structure of SBD(Spr), from endonuclease SprMcrA, in complex with DNA of G(PS)GCC, G(PS)ATC and G(PS)AAC contexts. Structural and computational analyses explained why it binds the above PT-DNAs with an affinity in a decreasing order. The structural analysis of SBD(Spr)–G(PS)GCC and SBD(Sco)–G(PS)GCC, the latter only recognizes DNA of G(PS)GCC, revealed that a positively charged loop above the sulfur-coordination cavity electrostatically interacts with the neighboring DNA phosphate linkage. The structural analysis indicated that the DNA–protein hydrogen bonding pattern and weak non-bonded interaction played important roles in sequence specificity of SBD protein. Exchanges of the positively-charged amino acid residues with the negatively-charged residues in the loop would enable SBD(Sco) to extend recognization for more PT-DNA sequences, implying that type IV endonucleases can be engineered to recognize PT-DNA in novel target sequences.
format Online
Article
Text
id pubmed-7470945
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-74709452020-09-09 DNA backbone interactions impact the sequence specificity of DNA sulfur-binding domains: revelations from structural analyses Yu, Hao Li, Jiayi Liu, Guang Zhao, Gong Wang, Yuli Hu, Wenyue Deng, Zixin Wu, Geng Gan, Jianhua Zhao, Yi-Lei He, Xinyi Nucleic Acids Res Structural Biology The sulfur atom of phosphorothioated DNA (PT-DNA) is coordinated by a surface cavity in the conserved sulfur-binding domain (SBD) of type IV restriction enzymes. However, some SBDs cannot recognize the sulfur atom in some sequence contexts. To illustrate the structural determinants for sequence specificity, we resolved the structure of SBD(Spr), from endonuclease SprMcrA, in complex with DNA of G(PS)GCC, G(PS)ATC and G(PS)AAC contexts. Structural and computational analyses explained why it binds the above PT-DNAs with an affinity in a decreasing order. The structural analysis of SBD(Spr)–G(PS)GCC and SBD(Sco)–G(PS)GCC, the latter only recognizes DNA of G(PS)GCC, revealed that a positively charged loop above the sulfur-coordination cavity electrostatically interacts with the neighboring DNA phosphate linkage. The structural analysis indicated that the DNA–protein hydrogen bonding pattern and weak non-bonded interaction played important roles in sequence specificity of SBD protein. Exchanges of the positively-charged amino acid residues with the negatively-charged residues in the loop would enable SBD(Sco) to extend recognization for more PT-DNA sequences, implying that type IV endonucleases can be engineered to recognize PT-DNA in novel target sequences. Oxford University Press 2020-09-04 2020-07-04 /pmc/articles/PMC7470945/ /pubmed/32621606 http://dx.doi.org/10.1093/nar/gkaa574 Text en © The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Structural Biology
Yu, Hao
Li, Jiayi
Liu, Guang
Zhao, Gong
Wang, Yuli
Hu, Wenyue
Deng, Zixin
Wu, Geng
Gan, Jianhua
Zhao, Yi-Lei
He, Xinyi
DNA backbone interactions impact the sequence specificity of DNA sulfur-binding domains: revelations from structural analyses
title DNA backbone interactions impact the sequence specificity of DNA sulfur-binding domains: revelations from structural analyses
title_full DNA backbone interactions impact the sequence specificity of DNA sulfur-binding domains: revelations from structural analyses
title_fullStr DNA backbone interactions impact the sequence specificity of DNA sulfur-binding domains: revelations from structural analyses
title_full_unstemmed DNA backbone interactions impact the sequence specificity of DNA sulfur-binding domains: revelations from structural analyses
title_short DNA backbone interactions impact the sequence specificity of DNA sulfur-binding domains: revelations from structural analyses
title_sort dna backbone interactions impact the sequence specificity of dna sulfur-binding domains: revelations from structural analyses
topic Structural Biology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7470945/
https://www.ncbi.nlm.nih.gov/pubmed/32621606
http://dx.doi.org/10.1093/nar/gkaa574
work_keys_str_mv AT yuhao dnabackboneinteractionsimpactthesequencespecificityofdnasulfurbindingdomainsrevelationsfromstructuralanalyses
AT lijiayi dnabackboneinteractionsimpactthesequencespecificityofdnasulfurbindingdomainsrevelationsfromstructuralanalyses
AT liuguang dnabackboneinteractionsimpactthesequencespecificityofdnasulfurbindingdomainsrevelationsfromstructuralanalyses
AT zhaogong dnabackboneinteractionsimpactthesequencespecificityofdnasulfurbindingdomainsrevelationsfromstructuralanalyses
AT wangyuli dnabackboneinteractionsimpactthesequencespecificityofdnasulfurbindingdomainsrevelationsfromstructuralanalyses
AT huwenyue dnabackboneinteractionsimpactthesequencespecificityofdnasulfurbindingdomainsrevelationsfromstructuralanalyses
AT dengzixin dnabackboneinteractionsimpactthesequencespecificityofdnasulfurbindingdomainsrevelationsfromstructuralanalyses
AT wugeng dnabackboneinteractionsimpactthesequencespecificityofdnasulfurbindingdomainsrevelationsfromstructuralanalyses
AT ganjianhua dnabackboneinteractionsimpactthesequencespecificityofdnasulfurbindingdomainsrevelationsfromstructuralanalyses
AT zhaoyilei dnabackboneinteractionsimpactthesequencespecificityofdnasulfurbindingdomainsrevelationsfromstructuralanalyses
AT hexinyi dnabackboneinteractionsimpactthesequencespecificityofdnasulfurbindingdomainsrevelationsfromstructuralanalyses