Cargando…
scIGANs: single-cell RNA-seq imputation using generative adversarial networks
Single-cell RNA-sequencing (scRNA-seq) enables the characterization of transcriptomic profiles at the single-cell resolution with increasingly high throughput. However, it suffers from many sources of technical noises, including insufficient mRNA molecules that lead to excess false zero values, term...
Autores principales: | Xu, Yungang, Zhang, Zhigang, You, Lei, Liu, Jiajia, Fan, Zhiwei, Zhou, Xiaobo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7470961/ https://www.ncbi.nlm.nih.gov/pubmed/32588900 http://dx.doi.org/10.1093/nar/gkaa506 |
Ejemplares similares
-
Cell lineage inference from SNP and scRNA-Seq data
por: Ding, Jun, et al.
Publicado: (2019) -
SpaGE: Spatial Gene Enhancement using scRNA-seq
por: Abdelaal, Tamim, et al.
Publicado: (2020) -
Single-Cell Signature Explorer for comprehensive visualization of single cell signatures across scRNA-seq datasets
por: Pont, Frédéric, et al.
Publicado: (2019) -
dropClust: efficient clustering of ultra-large scRNA-seq data
por: Sinha, Debajyoti, et al.
Publicado: (2018) -
MLG: multilayer graph clustering for multi-condition scRNA-seq data
por: Lu, Shan, et al.
Publicado: (2021)