Cargando…
Upregulation of BCL-2 by acridone derivative through gene promoter i-motif for alleviating liver damage of NAFLD/NASH
Nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH) are global epidemic public health problems with pathogenesis incompletely understood. Hepatocyte excessive apoptosis is a significant symbol for NAFLD/NASH patients, and therefore anti-apoptosis therapy could be used for NA...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7470982/ https://www.ncbi.nlm.nih.gov/pubmed/32710621 http://dx.doi.org/10.1093/nar/gkaa615 |
Sumario: | Nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH) are global epidemic public health problems with pathogenesis incompletely understood. Hepatocyte excessive apoptosis is a significant symbol for NAFLD/NASH patients, and therefore anti-apoptosis therapy could be used for NAFLD/NASH treatment. Up-regulation of BCL-2 has been found to be closely related with anti-apoptosis. BCL-2 gene promoter region has a C-rich sequence, which can form i-motif structure and play important role in regulating gene transcription. In this study, after extensive screening and evaluation, we found that acridone derivative A22 could up-regulate BCL-2 transcription and translation in vitro and in cells through selective binding to and stabilizing BCL-2 gene promoter i-motif. Our further experiments showed that A22 could reduce hepatocyte apoptosis in NAFLD/NASH model possibly through up-regulating BCL-2 expression. A22 could reduce inflammation, endoplasmic reticulum stress and cirrhosis in high-fat diet-fed mice liver model. Our findings provide a potentially new approach of anti-apoptosis for NAFLD/NASH treatment, and A22 could be further developed as a lead compound for NAFLD/NASH therapy. Our present study first demonstrated that gene promoter i-motif could be targeted for gene up-regulation for extended treatment of other important diseases besides cancer. |
---|