Cargando…
Semi-automated identification of biological control agent using artificial intelligence
The accurate identification of biological control agents is necessary for monitoring and preventing contamination in integrated pest management (IPM); however, this is difficult for non-taxonomists to achieve in the field. Many machine learning techniques have been developed for multiple application...
Autores principales: | Liao, Jhih-Rong, Lee, Hsiao-Chin, Chiu, Ming-Chih, Ko, Chiun-Cheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7471324/ https://www.ncbi.nlm.nih.gov/pubmed/32884097 http://dx.doi.org/10.1038/s41598-020-71798-x |
Ejemplares similares
-
Assessment of potential invasion for six phytophagous quarantine pests in Taiwan
por: Yeh, Hsin-Ting, et al.
Publicado: (2021) -
Automated identification of hip arthroplasty implants using artificial intelligence
por: Gong, Zibo, et al.
Publicado: (2022) -
Artificial intelligence–based technology for semi-automated segmentation of rectal cancer using high-resolution MRI
por: Hamabe, Atsushi, et al.
Publicado: (2022) -
Niche Modeling May Explain the Historical Population Failure of Phytoseiulus persimilis in Taiwan: Implications of Biocontrol Strategies
por: Liao, Jhih-Rong, et al.
Publicado: (2021) -
Origin and Potential Expansion of the Invasive Longan Lanternfly, Pyrops candelaria (Hemiptera: Fulgoridae) in Taiwan
por: Lin, You-Sheng, et al.
Publicado: (2021)