Cargando…
The lncRNA Malat1 functions as a ceRNA to contribute to berberine-mediated inhibition of HMGB1 by sponging miR-181c-5p in poststroke inflammation
Long non-coding RNAs (lncRNAs) have been identified as essential mediators in neurological dysfunction. Our previous study shows that berberine (BBR) hampers the nuclear-to-cytosolic translocation of high-mobility group box 1 (HMGB1) in the process of poststroke inflammation. In this study, we explo...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Singapore
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7471439/ https://www.ncbi.nlm.nih.gov/pubmed/31431734 http://dx.doi.org/10.1038/s41401-019-0284-y |
_version_ | 1783578771232653312 |
---|---|
author | Cao, Ding-wen Liu, Man-man Duan, Rui Tao, Yi-fu Zhou, Jun-shan Fang, Wei-rong Zhu, Jun-rong Niu, Li Sun, Jian-guo |
author_facet | Cao, Ding-wen Liu, Man-man Duan, Rui Tao, Yi-fu Zhou, Jun-shan Fang, Wei-rong Zhu, Jun-rong Niu, Li Sun, Jian-guo |
author_sort | Cao, Ding-wen |
collection | PubMed |
description | Long non-coding RNAs (lncRNAs) have been identified as essential mediators in neurological dysfunction. Our previous study shows that berberine (BBR) hampers the nuclear-to-cytosolic translocation of high-mobility group box 1 (HMGB1) in the process of poststroke inflammation. In this study, we explored the role of lncRNA metastasis‐associated lung adenocarcinoma transcript 1 (Malat1) in the process of BBR-induced inhibition of HMGB1 in ischemic brain. Before the 60-min MCAO surgery, the mice were pretreated with BBR (50 mg· kg(−1) per day, ig) for 14 days or ICV injected with specific lentiviral vector or shRNA. We showed that MCAO caused marked increase in the expression Malat1 and HMGB1 in the ipsilateral cortex, which was significantly attenuated by pretreatment with BBR. Knockdown of Malat1 attenuated the inflammatory injury after brain ischemia, whereas overexpression of Malat1 exacerbated ischemic brain inflammation. Overexpression of Malat1 also reversed BBR-induced reduction of HMGB1 and proinflammatory cytokines. The above results suggested a potential correlation between Malat1 and stroke inflammation. Based on informatics analysis we predicted that HMGB1 was a direct downstream target of miR-181c-5p, whereas Malat1 acted as a competitive endogenous RNA (ceRNA) for miR-181c-5p targeted the 3′-UTR of HMGB1 to promote inflammation after ischemic stroke. Knockdown of Malat1 significantly decreased HMGB1 level, which could be abrogated by transfection with miR-181c-5p inhibitors. Taken together, our results demonstrate for the first time that Malat1/miR-181c-5p/HMGB1 axis may be a key pathway of BBR-induced antiinflammation effects in stroke, and they may provide a novel avenue for targeted therapy. |
format | Online Article Text |
id | pubmed-7471439 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Springer Singapore |
record_format | MEDLINE/PubMed |
spelling | pubmed-74714392020-09-04 The lncRNA Malat1 functions as a ceRNA to contribute to berberine-mediated inhibition of HMGB1 by sponging miR-181c-5p in poststroke inflammation Cao, Ding-wen Liu, Man-man Duan, Rui Tao, Yi-fu Zhou, Jun-shan Fang, Wei-rong Zhu, Jun-rong Niu, Li Sun, Jian-guo Acta Pharmacol Sin Article Long non-coding RNAs (lncRNAs) have been identified as essential mediators in neurological dysfunction. Our previous study shows that berberine (BBR) hampers the nuclear-to-cytosolic translocation of high-mobility group box 1 (HMGB1) in the process of poststroke inflammation. In this study, we explored the role of lncRNA metastasis‐associated lung adenocarcinoma transcript 1 (Malat1) in the process of BBR-induced inhibition of HMGB1 in ischemic brain. Before the 60-min MCAO surgery, the mice were pretreated with BBR (50 mg· kg(−1) per day, ig) for 14 days or ICV injected with specific lentiviral vector or shRNA. We showed that MCAO caused marked increase in the expression Malat1 and HMGB1 in the ipsilateral cortex, which was significantly attenuated by pretreatment with BBR. Knockdown of Malat1 attenuated the inflammatory injury after brain ischemia, whereas overexpression of Malat1 exacerbated ischemic brain inflammation. Overexpression of Malat1 also reversed BBR-induced reduction of HMGB1 and proinflammatory cytokines. The above results suggested a potential correlation between Malat1 and stroke inflammation. Based on informatics analysis we predicted that HMGB1 was a direct downstream target of miR-181c-5p, whereas Malat1 acted as a competitive endogenous RNA (ceRNA) for miR-181c-5p targeted the 3′-UTR of HMGB1 to promote inflammation after ischemic stroke. Knockdown of Malat1 significantly decreased HMGB1 level, which could be abrogated by transfection with miR-181c-5p inhibitors. Taken together, our results demonstrate for the first time that Malat1/miR-181c-5p/HMGB1 axis may be a key pathway of BBR-induced antiinflammation effects in stroke, and they may provide a novel avenue for targeted therapy. Springer Singapore 2019-08-20 2020-01 /pmc/articles/PMC7471439/ /pubmed/31431734 http://dx.doi.org/10.1038/s41401-019-0284-y Text en © CPS and SIMM 2019 |
spellingShingle | Article Cao, Ding-wen Liu, Man-man Duan, Rui Tao, Yi-fu Zhou, Jun-shan Fang, Wei-rong Zhu, Jun-rong Niu, Li Sun, Jian-guo The lncRNA Malat1 functions as a ceRNA to contribute to berberine-mediated inhibition of HMGB1 by sponging miR-181c-5p in poststroke inflammation |
title | The lncRNA Malat1 functions as a ceRNA to contribute to berberine-mediated inhibition of HMGB1 by sponging miR-181c-5p in poststroke inflammation |
title_full | The lncRNA Malat1 functions as a ceRNA to contribute to berberine-mediated inhibition of HMGB1 by sponging miR-181c-5p in poststroke inflammation |
title_fullStr | The lncRNA Malat1 functions as a ceRNA to contribute to berberine-mediated inhibition of HMGB1 by sponging miR-181c-5p in poststroke inflammation |
title_full_unstemmed | The lncRNA Malat1 functions as a ceRNA to contribute to berberine-mediated inhibition of HMGB1 by sponging miR-181c-5p in poststroke inflammation |
title_short | The lncRNA Malat1 functions as a ceRNA to contribute to berberine-mediated inhibition of HMGB1 by sponging miR-181c-5p in poststroke inflammation |
title_sort | lncrna malat1 functions as a cerna to contribute to berberine-mediated inhibition of hmgb1 by sponging mir-181c-5p in poststroke inflammation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7471439/ https://www.ncbi.nlm.nih.gov/pubmed/31431734 http://dx.doi.org/10.1038/s41401-019-0284-y |
work_keys_str_mv | AT caodingwen thelncrnamalat1functionsasacernatocontributetoberberinemediatedinhibitionofhmgb1byspongingmir181c5pinpoststrokeinflammation AT liumanman thelncrnamalat1functionsasacernatocontributetoberberinemediatedinhibitionofhmgb1byspongingmir181c5pinpoststrokeinflammation AT duanrui thelncrnamalat1functionsasacernatocontributetoberberinemediatedinhibitionofhmgb1byspongingmir181c5pinpoststrokeinflammation AT taoyifu thelncrnamalat1functionsasacernatocontributetoberberinemediatedinhibitionofhmgb1byspongingmir181c5pinpoststrokeinflammation AT zhoujunshan thelncrnamalat1functionsasacernatocontributetoberberinemediatedinhibitionofhmgb1byspongingmir181c5pinpoststrokeinflammation AT fangweirong thelncrnamalat1functionsasacernatocontributetoberberinemediatedinhibitionofhmgb1byspongingmir181c5pinpoststrokeinflammation AT zhujunrong thelncrnamalat1functionsasacernatocontributetoberberinemediatedinhibitionofhmgb1byspongingmir181c5pinpoststrokeinflammation AT niuli thelncrnamalat1functionsasacernatocontributetoberberinemediatedinhibitionofhmgb1byspongingmir181c5pinpoststrokeinflammation AT sunjianguo thelncrnamalat1functionsasacernatocontributetoberberinemediatedinhibitionofhmgb1byspongingmir181c5pinpoststrokeinflammation AT caodingwen lncrnamalat1functionsasacernatocontributetoberberinemediatedinhibitionofhmgb1byspongingmir181c5pinpoststrokeinflammation AT liumanman lncrnamalat1functionsasacernatocontributetoberberinemediatedinhibitionofhmgb1byspongingmir181c5pinpoststrokeinflammation AT duanrui lncrnamalat1functionsasacernatocontributetoberberinemediatedinhibitionofhmgb1byspongingmir181c5pinpoststrokeinflammation AT taoyifu lncrnamalat1functionsasacernatocontributetoberberinemediatedinhibitionofhmgb1byspongingmir181c5pinpoststrokeinflammation AT zhoujunshan lncrnamalat1functionsasacernatocontributetoberberinemediatedinhibitionofhmgb1byspongingmir181c5pinpoststrokeinflammation AT fangweirong lncrnamalat1functionsasacernatocontributetoberberinemediatedinhibitionofhmgb1byspongingmir181c5pinpoststrokeinflammation AT zhujunrong lncrnamalat1functionsasacernatocontributetoberberinemediatedinhibitionofhmgb1byspongingmir181c5pinpoststrokeinflammation AT niuli lncrnamalat1functionsasacernatocontributetoberberinemediatedinhibitionofhmgb1byspongingmir181c5pinpoststrokeinflammation AT sunjianguo lncrnamalat1functionsasacernatocontributetoberberinemediatedinhibitionofhmgb1byspongingmir181c5pinpoststrokeinflammation |