Cargando…
Propofol affects mouse embryonic fibroblast survival and proliferation in vitro via ATG5- and calcium-dependent regulation of autophagy
Propofol is a commonly used intravenous anesthetic agent, which has been found to affect cell survival and proliferation especially in early life. Our previous studies show that propofol-induced neurodegeneration and neurogenesis are closely associated with cell autophagy. In the present study we ex...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Singapore
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7471456/ https://www.ncbi.nlm.nih.gov/pubmed/31645660 http://dx.doi.org/10.1038/s41401-019-0303-z |
Sumario: | Propofol is a commonly used intravenous anesthetic agent, which has been found to affect cell survival and proliferation especially in early life. Our previous studies show that propofol-induced neurodegeneration and neurogenesis are closely associated with cell autophagy. In the present study we explored the roles of autophagy-related gene 5 (ATG5) in propofol-induced autophagy in mouse embryonic fibroblasts (MEF) in vitro. We showed that ATG5 was functionally related to propofol-induced cell survival and damage: propofol significantly enhanced cell survival and proliferation at a clinically relevant dose (10 µM), but caused cell death at an extremely high concentration (200 µM) in ATG5(−/−) MEF, but not in WT cells. The dual effects found in ATG5(−/−) MEF could be blocked by intracellular Ca(2+) channel antagonists. We also found that propofol evoked a moderate (promote cell growth) and extremely high (cause apoptosis) cytosolic Ca(2+) elevation at the concentrations of 10 µM and 200 µM, respectively, only in ATG5(−/−) MEF. In addition, ATG5(−/−) MEF themselves released more Ca(2+) in cytosolic space and endoplasmic reticulum compared with WT cells, suggesting that autophagy deficiency made intracellular calcium signaling more vulnerable to external stimuli (propofol). Altogether, our results reveal that ATG5 plays a crucial role in propofol regulation of cell survival and proliferation by affecting intracellular Ca(2+) homeostasis. |
---|