Cargando…
Improving Model Performance on the Stratification of Breast Cancer Patients by Integrating Multiscale Genomic Features
In clinical cancer research, it is a hot topic on how to accurately stratify patients based on genomic data. With the development of next-generation sequencing technology, more and more types of genomic features, such as mRNA expression level, can be used to distinguish cancer patients. Previous stu...
Autores principales: | Hao, Yingyi, He, Li, Zhou, Yifan, Zhao, Yiru, Li, Menglong, Jing, Runyu, Wen, Zhining |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7471833/ https://www.ncbi.nlm.nih.gov/pubmed/32908867 http://dx.doi.org/10.1155/2020/1475368 |
Ejemplares similares
-
Uncovering the prognostic gene signatures for the improvement of risk stratification in cancers by using deep learning algorithm coupled with wavelet transform
por: Zhao, Yiru, et al.
Publicado: (2020) -
Comparative Analysis for the Performance of Variant Calling Pipelines on Detecting the de novo Mutations in Humans
por: Liang, Yu, et al.
Publicado: (2019) -
Narrowing the Gap Between In Vitro and In Vivo Genetic Profiles by Deconvoluting Toxicogenomic Data In Silico
por: Liu, Yuan, et al.
Publicado: (2020) -
Comparative Analysis for the Performance of Long-Read-Based Structural Variation Detection Pipelines in Tandem Repeat Regions
por: Guo, Mingkun, et al.
Publicado: (2021) -
A new strategy for exploring the hierarchical structure of cancers by adaptively partitioning functional modules from gene expression network
por: Xu, Junmei, et al.
Publicado: (2016)