Cargando…

Protective effect and mechanism of microRNA-146a on ankle fracture

The present study investigated the expression and role of microRNA-146a (miR-146a) on ankle fracture, and explored the underlying mechanism. miR-146a levels in the blood of patients with ankle fracture was measured using reverse transcription-quantitative PCR (RT-qPCR). Expression of pro-inflammator...

Descripción completa

Detalles Bibliográficos
Autores principales: Mao, Haijun, Xu, Guangyue
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7471879/
https://www.ncbi.nlm.nih.gov/pubmed/32934668
http://dx.doi.org/10.3892/etm.2020.9131
_version_ 1783578862570962944
author Mao, Haijun
Xu, Guangyue
author_facet Mao, Haijun
Xu, Guangyue
author_sort Mao, Haijun
collection PubMed
description The present study investigated the expression and role of microRNA-146a (miR-146a) on ankle fracture, and explored the underlying mechanism. miR-146a levels in the blood of patients with ankle fracture was measured using reverse transcription-quantitative PCR (RT-qPCR). Expression of pro-inflammatory factors in the peripheral blood of ankle fracture patients was also detected using ELISA. Oxidative stress biomarkers including malondialdehyde (MDA), superoxide dismutase (SOD) and catalase (CAT) were additionally investigated. The role of miR-146a in ankle fracture was investigated in vitro where MG-63 cells were transfected with miR-146a mimic or miR-146a inhibitor for 2 h, then treated with 1 µg/ml bradykinin for 24 h. An MTT assay was then performed to assess cell viability and pro-inflammatory factors were detected via RT-qPCR and western blot analysis. Finally, activation of the TNF receptor associated factor 6 (TRAF6)/NF-κB pathway was determined via western blotting and RT-qPCR. The results demonstrated that miR-146a was significantly downregulated in the blood of patients with ankle fracture. The protein levels of tumor necrosis factor (TNF-α), interleukin (IL)-1β and IL-6 were significantly upregulated in patients with ankle fracture. In addition, MDA content significantly increased, and SOD and CAT activity significantly decreased in patients with ankle fracture. In vitro experiments demonstrated that miR-146a overexpression significantly enhanced cell viability. miR-146a mimic suppressed BK-induced upregulation of TNF-α, IL-1β, IL-6 and MDA, and increased SOD and CAT activity. Finally, miR-146a mimic inhibited activation of the TRAF6/NF-κB pathway whilst miR-146a inhibitor had the opposite effect. In conclusion, miR-146a may be a potential therapeutic target for the treatment of ankle fracture by inhibiting the inflammatory response and attenuating oxidative stress.
format Online
Article
Text
id pubmed-7471879
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher D.A. Spandidos
record_format MEDLINE/PubMed
spelling pubmed-74718792020-09-14 Protective effect and mechanism of microRNA-146a on ankle fracture Mao, Haijun Xu, Guangyue Exp Ther Med Articles The present study investigated the expression and role of microRNA-146a (miR-146a) on ankle fracture, and explored the underlying mechanism. miR-146a levels in the blood of patients with ankle fracture was measured using reverse transcription-quantitative PCR (RT-qPCR). Expression of pro-inflammatory factors in the peripheral blood of ankle fracture patients was also detected using ELISA. Oxidative stress biomarkers including malondialdehyde (MDA), superoxide dismutase (SOD) and catalase (CAT) were additionally investigated. The role of miR-146a in ankle fracture was investigated in vitro where MG-63 cells were transfected with miR-146a mimic or miR-146a inhibitor for 2 h, then treated with 1 µg/ml bradykinin for 24 h. An MTT assay was then performed to assess cell viability and pro-inflammatory factors were detected via RT-qPCR and western blot analysis. Finally, activation of the TNF receptor associated factor 6 (TRAF6)/NF-κB pathway was determined via western blotting and RT-qPCR. The results demonstrated that miR-146a was significantly downregulated in the blood of patients with ankle fracture. The protein levels of tumor necrosis factor (TNF-α), interleukin (IL)-1β and IL-6 were significantly upregulated in patients with ankle fracture. In addition, MDA content significantly increased, and SOD and CAT activity significantly decreased in patients with ankle fracture. In vitro experiments demonstrated that miR-146a overexpression significantly enhanced cell viability. miR-146a mimic suppressed BK-induced upregulation of TNF-α, IL-1β, IL-6 and MDA, and increased SOD and CAT activity. Finally, miR-146a mimic inhibited activation of the TRAF6/NF-κB pathway whilst miR-146a inhibitor had the opposite effect. In conclusion, miR-146a may be a potential therapeutic target for the treatment of ankle fracture by inhibiting the inflammatory response and attenuating oxidative stress. D.A. Spandidos 2020-11 2020-08-25 /pmc/articles/PMC7471879/ /pubmed/32934668 http://dx.doi.org/10.3892/etm.2020.9131 Text en Copyright: © Mao et al. This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
spellingShingle Articles
Mao, Haijun
Xu, Guangyue
Protective effect and mechanism of microRNA-146a on ankle fracture
title Protective effect and mechanism of microRNA-146a on ankle fracture
title_full Protective effect and mechanism of microRNA-146a on ankle fracture
title_fullStr Protective effect and mechanism of microRNA-146a on ankle fracture
title_full_unstemmed Protective effect and mechanism of microRNA-146a on ankle fracture
title_short Protective effect and mechanism of microRNA-146a on ankle fracture
title_sort protective effect and mechanism of microrna-146a on ankle fracture
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7471879/
https://www.ncbi.nlm.nih.gov/pubmed/32934668
http://dx.doi.org/10.3892/etm.2020.9131
work_keys_str_mv AT maohaijun protectiveeffectandmechanismofmicrorna146aonanklefracture
AT xuguangyue protectiveeffectandmechanismofmicrorna146aonanklefracture