Cargando…
Interpretability of Input Representations for Gait Classification in Patients after Total Hip Arthroplasty
Many machine learning models show black box characteristics and, therefore, a lack of transparency, interpretability, and trustworthiness. This strongly limits their practical application in clinical contexts. For overcoming these limitations, Explainable Artificial Intelligence (XAI) has shown prom...
Autores principales: | Dindorf, Carlo, Teufl, Wolfgang, Taetz, Bertram, Bleser, Gabriele, Fröhlich, Michael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7471970/ https://www.ncbi.nlm.nih.gov/pubmed/32781583 http://dx.doi.org/10.3390/s20164385 |
Ejemplares similares
-
Towards an Inertial Sensor-Based Wearable Feedback System for Patients after Total Hip Arthroplasty: Validity and Applicability for Gait Classification with Gait Kinematics-Based Features
por: Teufl, Wolfgang, et al.
Publicado: (2019) -
Towards Inertial Sensor Based Mobile Gait Analysis: Event-Detection and Spatio-Temporal Parameters
por: Teufl, Wolfgang, et al.
Publicado: (2018) -
Validity, Test-Retest Reliability and Long-Term Stability of Magnetometer Free Inertial Sensor Based 3D Joint Kinematics
por: Teufl, Wolfgang, et al.
Publicado: (2018) -
Validity of inertial sensor based 3D joint kinematics of static and dynamic sport and physiotherapy specific movements
por: Teufl, Wolfgang, et al.
Publicado: (2019) -
Classification and Automated Interpretation of Spinal Posture Data Using a Pathology-Independent Classifier and Explainable Artificial Intelligence (XAI)
por: Dindorf, Carlo, et al.
Publicado: (2021)