Cargando…
Knowledge Distillation for Semantic Segmentation Using Channel and Spatial Correlations and Adaptive Cross Entropy
In this paper, we propose an efficient knowledge distillation method to train light networks using heavy networks for semantic segmentation. Most semantic segmentation networks that exhibit good accuracy are based on computationally expensive networks. These networks are not suitable for mobile appl...
Autores principales: | Park, Sangyong, Heo, Yong Seok |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7471971/ https://www.ncbi.nlm.nih.gov/pubmed/32824456 http://dx.doi.org/10.3390/s20164616 |
Ejemplares similares
-
Semantic Segmentation Using Pixel-Wise Adaptive Label Smoothing via Self-Knowledge Distillation for Limited Labeling Data
por: Park, Sangyong, et al.
Publicado: (2022) -
FCKDNet: A Feature Condensation Knowledge Distillation Network for Semantic Segmentation
por: Yuan, Wenhao, et al.
Publicado: (2023) -
Scale-Hybrid Group Distillation with Knowledge Disentangling for Continual Semantic Segmentation
por: Song, Zichen, et al.
Publicado: (2023) -
Multilayer Semantic Features Adaptive Distillation for Object Detectors
por: Zhang, Zhenchang, et al.
Publicado: (2023) -
Semi-Supervised Semantic Segmentation of Remote Sensing Images Based on Dual Cross-Entropy Consistency
por: Cui, Mengtian, et al.
Publicado: (2023)