Cargando…

Horizontal Pod Autoscaling in Kubernetes for Elastic Container Orchestration

Kubernetes, an open-source container orchestration platform, enables high availability and scalability through diverse autoscaling mechanisms such as Horizontal Pod Autoscaler (HPA), Vertical Pod Autoscaler and Cluster Autoscaler. Amongst them, HPA helps provide seamless service by dynamically scali...

Descripción completa

Detalles Bibliográficos
Autores principales: Nguyen, Thanh-Tung, Yeom, Yu-Jin, Kim, Taehong, Park, Dae-Heon, Kim, Sehan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7471989/
https://www.ncbi.nlm.nih.gov/pubmed/32824508
http://dx.doi.org/10.3390/s20164621
_version_ 1783578885936381952
author Nguyen, Thanh-Tung
Yeom, Yu-Jin
Kim, Taehong
Park, Dae-Heon
Kim, Sehan
author_facet Nguyen, Thanh-Tung
Yeom, Yu-Jin
Kim, Taehong
Park, Dae-Heon
Kim, Sehan
author_sort Nguyen, Thanh-Tung
collection PubMed
description Kubernetes, an open-source container orchestration platform, enables high availability and scalability through diverse autoscaling mechanisms such as Horizontal Pod Autoscaler (HPA), Vertical Pod Autoscaler and Cluster Autoscaler. Amongst them, HPA helps provide seamless service by dynamically scaling up and down the number of resource units, called pods, without having to restart the whole system. Kubernetes monitors default Resource Metrics including CPU and memory usage of host machines and their pods. On the other hand, Custom Metrics, provided by external software such as Prometheus, are customizable to monitor a wide collection of metrics. In this paper, we investigate HPA through diverse experiments to provide critical knowledge on its operational behaviors. We also discuss the essential difference between Kubernetes Resource Metrics (KRM) and Prometheus Custom Metrics (PCM) and how they affect HPA’s performance. Lastly, we provide deeper insights and lessons on how to optimize the performance of HPA for researchers, developers, and system administrators working with Kubernetes in the future.
format Online
Article
Text
id pubmed-7471989
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-74719892020-09-17 Horizontal Pod Autoscaling in Kubernetes for Elastic Container Orchestration Nguyen, Thanh-Tung Yeom, Yu-Jin Kim, Taehong Park, Dae-Heon Kim, Sehan Sensors (Basel) Article Kubernetes, an open-source container orchestration platform, enables high availability and scalability through diverse autoscaling mechanisms such as Horizontal Pod Autoscaler (HPA), Vertical Pod Autoscaler and Cluster Autoscaler. Amongst them, HPA helps provide seamless service by dynamically scaling up and down the number of resource units, called pods, without having to restart the whole system. Kubernetes monitors default Resource Metrics including CPU and memory usage of host machines and their pods. On the other hand, Custom Metrics, provided by external software such as Prometheus, are customizable to monitor a wide collection of metrics. In this paper, we investigate HPA through diverse experiments to provide critical knowledge on its operational behaviors. We also discuss the essential difference between Kubernetes Resource Metrics (KRM) and Prometheus Custom Metrics (PCM) and how they affect HPA’s performance. Lastly, we provide deeper insights and lessons on how to optimize the performance of HPA for researchers, developers, and system administrators working with Kubernetes in the future. MDPI 2020-08-17 /pmc/articles/PMC7471989/ /pubmed/32824508 http://dx.doi.org/10.3390/s20164621 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Nguyen, Thanh-Tung
Yeom, Yu-Jin
Kim, Taehong
Park, Dae-Heon
Kim, Sehan
Horizontal Pod Autoscaling in Kubernetes for Elastic Container Orchestration
title Horizontal Pod Autoscaling in Kubernetes for Elastic Container Orchestration
title_full Horizontal Pod Autoscaling in Kubernetes for Elastic Container Orchestration
title_fullStr Horizontal Pod Autoscaling in Kubernetes for Elastic Container Orchestration
title_full_unstemmed Horizontal Pod Autoscaling in Kubernetes for Elastic Container Orchestration
title_short Horizontal Pod Autoscaling in Kubernetes for Elastic Container Orchestration
title_sort horizontal pod autoscaling in kubernetes for elastic container orchestration
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7471989/
https://www.ncbi.nlm.nih.gov/pubmed/32824508
http://dx.doi.org/10.3390/s20164621
work_keys_str_mv AT nguyenthanhtung horizontalpodautoscalinginkubernetesforelasticcontainerorchestration
AT yeomyujin horizontalpodautoscalinginkubernetesforelasticcontainerorchestration
AT kimtaehong horizontalpodautoscalinginkubernetesforelasticcontainerorchestration
AT parkdaeheon horizontalpodautoscalinginkubernetesforelasticcontainerorchestration
AT kimsehan horizontalpodautoscalinginkubernetesforelasticcontainerorchestration