Cargando…
Analysis of Influence of Segmentation, Features, and Classification in sEMG Processing: A Case Study of Recognition of Brazilian Sign Language Alphabet
Sign Language recognition systems aid communication among deaf people, hearing impaired people, and speakers. One of the types of signals that has seen increased studies and that can be used as input for these systems is surface electromyography (sEMG). This work presents the recognition of a set of...
Autores principales: | Mendes Junior, José Jair Alves, Freitas, Melissa La Banca, Campos, Daniel Prado, Farinelli, Felipe Adalberto, Stevan, Sergio Luiz, Pichorim, Sérgio Francisco |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7471999/ https://www.ncbi.nlm.nih.gov/pubmed/32764286 http://dx.doi.org/10.3390/s20164359 |
Ejemplares similares
-
An EMG dataset for Arabic sign language alphabet letters and numbers
por: Ben Haj Amor, Amina, et al.
Publicado: (2023) -
sEMG dataset of routine activities
por: Khan, Asad Mansoor, et al.
Publicado: (2020) -
Voiceless Bangla vowel recognition using sEMG signal
por: Mostafa, S. S., et al.
Publicado: (2016) -
Sign Language Recognition for Arabic Alphabets Using Transfer Learning Technique
por: Zakariah, Mohammed, et al.
Publicado: (2022) -
The Influence of the sEMG Amplitude Estimation Technique on the EMG–Force Relationship
por: Ranaldi, Simone, et al.
Publicado: (2022)