Cargando…
Fault Detection and Classification in MMC-HVDC Systems Using Learning Methods
In this paper, we explore learning methods to improve the performance of the open-circuit fault diagnosis of modular multilevel converters (MMCs). Two deep learning methods, namely, convolutional neural networks (CNN) and auto encoder based deep neural networks (AE-based DNN), as well as stand-alone...
Autores principales: | Wang, Qinghua, Yu, Yuexiao, Ahmed, Hosameldin O. A., Darwish, Mohamed, Nandi, Asoke K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7472012/ https://www.ncbi.nlm.nih.gov/pubmed/32784473 http://dx.doi.org/10.3390/s20164438 |
Ejemplares similares
-
Open-Circuit Fault Detection and Classification of Modular Multilevel Converters in High Voltage Direct Current Systems (MMC-HVDC) with Long Short-Term Memory (LSTM) Method
por: Wang, Qinghua, et al.
Publicado: (2021) -
Intelligent Fault Diagnosis Framework for Modular Multilevel Converters in HVDC Transmission
por: Ahmed, Hosameldin O. A., et al.
Publicado: (2022) -
A Control Strategy for Ground Fault on the AC Side of MMC-HVDC System
por: Li, Hua, et al.
Publicado: (2022) -
Inertial imitation method of MMC with hybrid topology for VSC-HVDC
por: Wu, Jie, et al.
Publicado: (2022) -
Intrinsic Dimension Estimation-Based Feature Selection and Multinomial Logistic Regression for Classification of Bearing Faults Using Compressively Sampled Vibration Signals
por: Ahmed, Hosameldin O. A., et al.
Publicado: (2022)