Cargando…
Smart Graphite–Cement Composite for Roadway-Integrated Weigh-In-Motion Sensing
Smart multifunctional composites exhibit enhanced physical and mechanical properties and can provide structures with new capabilities. The authors have recently initiated a research program aimed at developing new strain-sensing pavement materials enabling roadway-integrated weigh-in motion (WIM) se...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7472024/ https://www.ncbi.nlm.nih.gov/pubmed/32806752 http://dx.doi.org/10.3390/s20164518 |
_version_ | 1783578894080671744 |
---|---|
author | Birgin, Hasan Borke D’Alessandro, Antonella Laflamme, Simon Ubertini, Filippo |
author_facet | Birgin, Hasan Borke D’Alessandro, Antonella Laflamme, Simon Ubertini, Filippo |
author_sort | Birgin, Hasan Borke |
collection | PubMed |
description | Smart multifunctional composites exhibit enhanced physical and mechanical properties and can provide structures with new capabilities. The authors have recently initiated a research program aimed at developing new strain-sensing pavement materials enabling roadway-integrated weigh-in motion (WIM) sensing. The goal is to achieve an accurate WIM for infrastructure monitoring at lower costs and with enhanced durability compared to off-the-shelf solutions. Previous work was devoted to formulating a signal processing algorithm for estimating the axle number and weights, along with the vehicle speed based on the outputs of a piezoresistive pavement material deployed within a bridge deck. This work proposes and characterizes a suitable low-cost and highly scalable cement-based composite with strain-sensing capabilities and sufficient sensitivity to meet WIM signal requirements. Graphite cement-based smart composites are presented, and their electromechanical properties are investigated in view of their application to WIM. These composites are engineered for scalability owing to the ease of dispersion of the graphite powder in the cement matrix, and can thus be used to build smart sections of road pavements. The research presented in this paper consists of electromechanical tests performed on samples of different amounts of graphite for the identification of the optimal mix in terms of signal sensitivity. An optimum inclusion level of 20% by weight of cement is obtained and selected for the fabrication of a plate of 30 × 15 × 5 cm(3). Results from load identification tests conducted on the plate show that the proposed technology is capable of WIM. |
format | Online Article Text |
id | pubmed-7472024 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-74720242020-09-17 Smart Graphite–Cement Composite for Roadway-Integrated Weigh-In-Motion Sensing Birgin, Hasan Borke D’Alessandro, Antonella Laflamme, Simon Ubertini, Filippo Sensors (Basel) Article Smart multifunctional composites exhibit enhanced physical and mechanical properties and can provide structures with new capabilities. The authors have recently initiated a research program aimed at developing new strain-sensing pavement materials enabling roadway-integrated weigh-in motion (WIM) sensing. The goal is to achieve an accurate WIM for infrastructure monitoring at lower costs and with enhanced durability compared to off-the-shelf solutions. Previous work was devoted to formulating a signal processing algorithm for estimating the axle number and weights, along with the vehicle speed based on the outputs of a piezoresistive pavement material deployed within a bridge deck. This work proposes and characterizes a suitable low-cost and highly scalable cement-based composite with strain-sensing capabilities and sufficient sensitivity to meet WIM signal requirements. Graphite cement-based smart composites are presented, and their electromechanical properties are investigated in view of their application to WIM. These composites are engineered for scalability owing to the ease of dispersion of the graphite powder in the cement matrix, and can thus be used to build smart sections of road pavements. The research presented in this paper consists of electromechanical tests performed on samples of different amounts of graphite for the identification of the optimal mix in terms of signal sensitivity. An optimum inclusion level of 20% by weight of cement is obtained and selected for the fabrication of a plate of 30 × 15 × 5 cm(3). Results from load identification tests conducted on the plate show that the proposed technology is capable of WIM. MDPI 2020-08-12 /pmc/articles/PMC7472024/ /pubmed/32806752 http://dx.doi.org/10.3390/s20164518 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Birgin, Hasan Borke D’Alessandro, Antonella Laflamme, Simon Ubertini, Filippo Smart Graphite–Cement Composite for Roadway-Integrated Weigh-In-Motion Sensing |
title | Smart Graphite–Cement Composite for Roadway-Integrated Weigh-In-Motion Sensing |
title_full | Smart Graphite–Cement Composite for Roadway-Integrated Weigh-In-Motion Sensing |
title_fullStr | Smart Graphite–Cement Composite for Roadway-Integrated Weigh-In-Motion Sensing |
title_full_unstemmed | Smart Graphite–Cement Composite for Roadway-Integrated Weigh-In-Motion Sensing |
title_short | Smart Graphite–Cement Composite for Roadway-Integrated Weigh-In-Motion Sensing |
title_sort | smart graphite–cement composite for roadway-integrated weigh-in-motion sensing |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7472024/ https://www.ncbi.nlm.nih.gov/pubmed/32806752 http://dx.doi.org/10.3390/s20164518 |
work_keys_str_mv | AT birginhasanborke smartgraphitecementcompositeforroadwayintegratedweighinmotionsensing AT dalessandroantonella smartgraphitecementcompositeforroadwayintegratedweighinmotionsensing AT laflammesimon smartgraphitecementcompositeforroadwayintegratedweighinmotionsensing AT ubertinifilippo smartgraphitecementcompositeforroadwayintegratedweighinmotionsensing |