Cargando…
Machine Learning Models for Classifying Physical Activity in Free-Living Preschool Children
Machine learning (ML) activity classification models trained on laboratory-based activity trials exhibit low accuracy under free-living conditions. Training new models on free-living accelerometer data, reducing the number of prediction windows comprised of multiple activity types by using shorter w...
Autores principales: | Ahmadi, Matthew N., Pavey, Toby G., Trost, Stewart G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7472058/ https://www.ncbi.nlm.nih.gov/pubmed/32764316 http://dx.doi.org/10.3390/s20164364 |
Ejemplares similares
-
Laboratory-based and free-living algorithms for energy expenditure estimation in preschool children: A free-living evaluation
por: Ahmadi, Matthew N., et al.
Publicado: (2020) -
Device-based measurement of physical activity in pre-schoolers: Comparison of machine learning and cut point methods
por: Ahmadi, Matthew N., et al.
Publicado: (2022) -
Evaluation of Wrist Accelerometer Cut-Points for Classifying Physical Activity Intensity in Youth
por: Trost, Stewart G., et al.
Publicado: (2022) -
Support vector machines classifiers of physical activities in preschoolers
por: Zhao, Wei, et al.
Publicado: (2013) -
Machine Learning to Quantify Physical Activity in Children with Cerebral Palsy: Comparison of Group, Group-Personalized, and Fully-Personalized Activity Classification Models
por: Ahmadi, Matthew N., et al.
Publicado: (2020)