Cargando…
Efficient Noisy Sound-Event Mixture Classification Using Adaptive-Sparse Complex-Valued Matrix Factorization and OvsO SVM
This paper proposes a solution for events classification from a sole noisy mixture that consist of two major steps: a sound-event separation and a sound-event classification. The traditional complex nonnegative matrix factorization (CMF) is extended by cooperation with the optimal adaptive L(1) spar...
Autores principales: | Parathai, Phetcharat, Tengtrairat, Naruephorn, Woo, Wai Lok, Abdullah, Mohammed A. M., Rafiee, Gholamreza, Alshabrawy, Ossama |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7472059/ https://www.ncbi.nlm.nih.gov/pubmed/32764362 http://dx.doi.org/10.3390/s20164368 |
Ejemplares similares
-
Non-Intrusive Fish Weight Estimation in Turbid Water Using Deep Learning and Regression Models
por: Tengtrairat, Naruephorn, et al.
Publicado: (2022) -
Automated Landslide-Risk Prediction Using Web GIS and Machine Learning Models
por: Tengtrairat, Naruephorn, et al.
Publicado: (2021) -
Inferring sparse networks for noisy transient processes
por: Tran, Hoang M., et al.
Publicado: (2016) -
Population coding in sparsely connected networks of noisy neurons
por: Tripp, Bryan P., et al.
Publicado: (2012) -
Assessing uncertainty in model parameters based on sparse and noisy experimental data
por: Hiroi, Noriko, et al.
Publicado: (2014)