Cargando…
CNN and LSTM-Based Emotion Charting Using Physiological Signals
Novel trends in affective computing are based on reliable sources of physiological signals such as Electroencephalogram (EEG), Electrocardiogram (ECG), and Galvanic Skin Response (GSR). The use of these signals provides challenges of performance improvement within a broader set of emotion classes in...
Autores principales: | Dar, Muhammad Najam, Akram, Muhammad Usman, Khawaja, Sajid Gul, Pujari, Amit N. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7472085/ https://www.ncbi.nlm.nih.gov/pubmed/32823807 http://dx.doi.org/10.3390/s20164551 |
Ejemplares similares
-
An Ensemble Learning Method for Emotion Charting Using Multimodal Physiological Signals
por: Awan, Amna Waheed, et al.
Publicado: (2022) -
Attention based automated radiology report generation using CNN and LSTM
por: Sirshar, Mehreen, et al.
Publicado: (2022) -
EEG-fNIRS-based hybrid image construction and classification using CNN-LSTM
por: Mughal, Nabeeha Ehsan, et al.
Publicado: (2022) -
Personality-Based Emotion Recognition Using EEG Signals with a CNN-LSTM Network
por: Hosseini, Mohammad Saleh Khajeh, et al.
Publicado: (2023) -
EEG-based emotion recognition using hybrid CNN and LSTM classification
por: Chakravarthi, Bhuvaneshwari, et al.
Publicado: (2022)