Cargando…

Wearable Belt With Built-In Textile Electrodes for Cardio—Respiratory Monitoring

Unobtrusive and continuous monitoring of vital signs is becoming more and more important both for patient monitoring in the home environment and for sports activity tracking. Even though many gadgets and clinical systems exist, the need for simple, low-cost and easily applicable solutions still rema...

Descripción completa

Detalles Bibliográficos
Autores principales: Piuzzi, Emanuele, Pisa, Stefano, Pittella, Erika, Podestà, Luca, Sangiovanni, Silvia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7472108/
https://www.ncbi.nlm.nih.gov/pubmed/32806534
http://dx.doi.org/10.3390/s20164500
Descripción
Sumario:Unobtrusive and continuous monitoring of vital signs is becoming more and more important both for patient monitoring in the home environment and for sports activity tracking. Even though many gadgets and clinical systems exist, the need for simple, low-cost and easily applicable solutions still remains, especially in view of a more widespread use within everyone’s reach. The paper presents a fully wearable and wireless sensorized belt, suitable to simultaneously acquire respiratory and cardiac signals employing a single acquisition channel. The adopted method relies on a 50-kHz current injected in the subject thorax through a couple of textile electrodes and on envelope detection of the trans-thoracic voltage acquired from a couple of different embedded electrodes. The resulting signal contains both the baseband electrocardiogram (ECG) signal and the trans-thoracic impedance signal, which encodes respiratory acts. The two signals can be easily separated through suitable filtering and the cardio–respiratory rates extracted. The proposed solution yields performances comparable to those of a spirometer and a two-lead ECG. The whole system, with a realization cost below 100 €, a wireless interface, and several hours (or even days) of autonomy, is a suitable candidate for everyday use, especially if complemented by motion artifact removal techniques, currently under implementation.