Cargando…
A Joint Constraint Incentive Mechanism Algorithm Utilizing Coverage and Reputation for Mobile Crowdsensing
Selection of the optimal users to maximize the quality of the collected sensing data within a certain budget range is a crucial issue that affects the effectiveness of mobile crowdsensing (MCS). The coverage of mobile users (MUs) in a target area is relevant to the accuracy of sensing data. Furtherm...
Autores principales: | Zhang, Jing, Yang, Xiaoxiao, Feng, Xin, Yang, Hongwei, Ren, An |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7472154/ https://www.ncbi.nlm.nih.gov/pubmed/32796520 http://dx.doi.org/10.3390/s20164478 |
Ejemplares similares
-
Design of a Local Information Incentive Mechanism for Mobile Crowdsensing
por: Nava Auza, Jose Mauricio, et al.
Publicado: (2019) -
Incentives for Delay-Constrained Data Query and Feedback in Mobile Opportunistic Crowdsensing
por: Liu, Yang, et al.
Publicado: (2016) -
Efficient Path Planning and Truthful Incentive Mechanism Design for Mobile Crowdsensing
por: Tao, Xi, et al.
Publicado: (2018) -
Probabilistic Coverage Constraint Task Assignment with Privacy Protection in Vehicular Crowdsensing
por: Li, Zhe, et al.
Publicado: (2023) -
Time-Efficient Allocation Mechanisms for Crowdsensing Tasks with Precedence Constraints †
por: Wu, Xiaocan, et al.
Publicado: (2019)