Cargando…
Future-Frame Prediction for Fast-Moving Objects with Motion Blur
We propose a deep neural network model that recognizes the position and velocity of a fast-moving object in a video sequence and predicts the object’s future motion. When filming a fast-moving subject using a regular camera rather than a super-high-speed camera, there is often severe motion blur, ma...
Autores principales: | Lee, Dohae, Oh, Young Jin, Lee, In-Kwon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7472172/ https://www.ncbi.nlm.nih.gov/pubmed/32781700 http://dx.doi.org/10.3390/s20164394 |
Ejemplares similares
-
Motion Blur Microscopy
por: Goreke, Utku, et al.
Publicado: (2023) -
Real-Time Robust Tracking for Motion Blur and Fast Motion via Correlation Filters
por: Xu, Lingyun, et al.
Publicado: (2016) -
Estimation and Sharpening of Blur in Degraded Images Captured by a Camera on a Moving Object
por: Hayashi, Toshiyuki, et al.
Publicado: (2022) -
Using a Blur Metric to Estimate Linear Motion Blur Parameters
por: Askari Javaran, Taiebeh, et al.
Publicado: (2021) -
Vision System for Coarsely Estimating Motion Parameters for Unknown Fast Moving Objects in Space
por: Chen, Min, et al.
Publicado: (2017)