Cargando…
Pine Cone Detection Using Boundary Equilibrium Generative Adversarial Networks and Improved YOLOv3 Model
The real-time detection of pine cones in Korean pine forests is not only the data basis for the mechanized picking of pine cones, but also one of the important methods for evaluating the yield of Korean pine forests. In recent years, there has been a certain number of detection accuracy for image pr...
Autores principales: | Luo, Ze, Yu, Huiling, Zhang, Yizhuo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7472199/ https://www.ncbi.nlm.nih.gov/pubmed/32784403 http://dx.doi.org/10.3390/s20164430 |
Ejemplares similares
-
Detection of Pine Cones in Natural Environment Using Improved YOLOv4 Deep Learning Algorithm
por: Luo, Ze, et al.
Publicado: (2021) -
EBE-YOLOv4: A lightweight detecting model for pine cones in forest
por: Zhang, Zebing, et al.
Publicado: (2022) -
Information-Based Boundary Equilibrium Generative Adversarial Networks with Interpretable Representation Learning
por: Hah, Junghoon, et al.
Publicado: (2018) -
A cycle generative adversarial network for improving the quality of four-dimensional cone-beam computed tomography images
por: Usui, Keisuke, et al.
Publicado: (2022) -
TIA-YOLOv5: An improved YOLOv5 network for real-time detection of crop and weed in the field
por: Wang, Aichen, et al.
Publicado: (2022)