Cargando…
A Novel Approach to Using Spectral Imaging to Classify Dyes in Colored Fibers
In the field of cultural heritage, applied dyes on textiles are studied to explore their great artistic and historic values. Dye analysis is essential and important to plan correct restoration, preservation and display strategy in museums and art galleries. However, most of the existing diagnostic t...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7472242/ https://www.ncbi.nlm.nih.gov/pubmed/32764452 http://dx.doi.org/10.3390/s20164379 |
_version_ | 1783578943473844224 |
---|---|
author | Rahaman, G. M. Atiqur Parkkinen, Jussi Hauta-Kasari, Markku |
author_facet | Rahaman, G. M. Atiqur Parkkinen, Jussi Hauta-Kasari, Markku |
author_sort | Rahaman, G. M. Atiqur |
collection | PubMed |
description | In the field of cultural heritage, applied dyes on textiles are studied to explore their great artistic and historic values. Dye analysis is essential and important to plan correct restoration, preservation and display strategy in museums and art galleries. However, most of the existing diagnostic technologies are destructive to the historical objects. In contrast to that, spectral reflectance imaging is potential as a non-destructive and spatially resolved technique. There have been hardly any studies in classification of dyes in textile fibers using spectral imaging. In this study, we show that spectral imaging with machine learning technique is capable in preliminary screening of dyes into the natural or synthetic class. At first, sparse logistic regression algorithm is applied on reflectance data of dyed fibers to determine some discriminating bands. Then support vector machine algorithm (SVM) is applied for classification considering the reflectance of the selected spectral bands. The results show nine selected bands in short wave infrared region (SWIR, 1000–2500 nm) classify dyes with 97.4% accuracy (kappa 0.94). Interestingly, the results show that fairly accurate dye classification can be achieved using the bands at 1480nm, 1640 nm, and 2330 nm. This indicates possibilities to build an inexpensive handheld screening device for field studies. |
format | Online Article Text |
id | pubmed-7472242 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-74722422020-09-04 A Novel Approach to Using Spectral Imaging to Classify Dyes in Colored Fibers Rahaman, G. M. Atiqur Parkkinen, Jussi Hauta-Kasari, Markku Sensors (Basel) Article In the field of cultural heritage, applied dyes on textiles are studied to explore their great artistic and historic values. Dye analysis is essential and important to plan correct restoration, preservation and display strategy in museums and art galleries. However, most of the existing diagnostic technologies are destructive to the historical objects. In contrast to that, spectral reflectance imaging is potential as a non-destructive and spatially resolved technique. There have been hardly any studies in classification of dyes in textile fibers using spectral imaging. In this study, we show that spectral imaging with machine learning technique is capable in preliminary screening of dyes into the natural or synthetic class. At first, sparse logistic regression algorithm is applied on reflectance data of dyed fibers to determine some discriminating bands. Then support vector machine algorithm (SVM) is applied for classification considering the reflectance of the selected spectral bands. The results show nine selected bands in short wave infrared region (SWIR, 1000–2500 nm) classify dyes with 97.4% accuracy (kappa 0.94). Interestingly, the results show that fairly accurate dye classification can be achieved using the bands at 1480nm, 1640 nm, and 2330 nm. This indicates possibilities to build an inexpensive handheld screening device for field studies. MDPI 2020-08-05 /pmc/articles/PMC7472242/ /pubmed/32764452 http://dx.doi.org/10.3390/s20164379 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Rahaman, G. M. Atiqur Parkkinen, Jussi Hauta-Kasari, Markku A Novel Approach to Using Spectral Imaging to Classify Dyes in Colored Fibers |
title | A Novel Approach to Using Spectral Imaging to Classify Dyes in Colored Fibers |
title_full | A Novel Approach to Using Spectral Imaging to Classify Dyes in Colored Fibers |
title_fullStr | A Novel Approach to Using Spectral Imaging to Classify Dyes in Colored Fibers |
title_full_unstemmed | A Novel Approach to Using Spectral Imaging to Classify Dyes in Colored Fibers |
title_short | A Novel Approach to Using Spectral Imaging to Classify Dyes in Colored Fibers |
title_sort | novel approach to using spectral imaging to classify dyes in colored fibers |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7472242/ https://www.ncbi.nlm.nih.gov/pubmed/32764452 http://dx.doi.org/10.3390/s20164379 |
work_keys_str_mv | AT rahamangmatiqur anovelapproachtousingspectralimagingtoclassifydyesincoloredfibers AT parkkinenjussi anovelapproachtousingspectralimagingtoclassifydyesincoloredfibers AT hautakasarimarkku anovelapproachtousingspectralimagingtoclassifydyesincoloredfibers AT rahamangmatiqur novelapproachtousingspectralimagingtoclassifydyesincoloredfibers AT parkkinenjussi novelapproachtousingspectralimagingtoclassifydyesincoloredfibers AT hautakasarimarkku novelapproachtousingspectralimagingtoclassifydyesincoloredfibers |