Cargando…
Discovery of an Abundance of Biosynthetic Gene Clusters in Shark Bay Microbial Mats
Microbial mats are geobiological multilayered ecosystems that have significant evolutionary value in understanding the evolution of early life on Earth. Shark Bay, Australia has some of the best examples of modern microbial mats thriving under harsh conditions of high temperatures, salinity, desicca...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7472256/ https://www.ncbi.nlm.nih.gov/pubmed/32973707 http://dx.doi.org/10.3389/fmicb.2020.01950 |
_version_ | 1783578946807267328 |
---|---|
author | Chen, Ray Wong, Hon Lun Kindler, Gareth S. MacLeod, Fraser Iain Benaud, Nicole Ferrari, Belinda C. Burns, Brendan P. |
author_facet | Chen, Ray Wong, Hon Lun Kindler, Gareth S. MacLeod, Fraser Iain Benaud, Nicole Ferrari, Belinda C. Burns, Brendan P. |
author_sort | Chen, Ray |
collection | PubMed |
description | Microbial mats are geobiological multilayered ecosystems that have significant evolutionary value in understanding the evolution of early life on Earth. Shark Bay, Australia has some of the best examples of modern microbial mats thriving under harsh conditions of high temperatures, salinity, desiccation, and ultraviolet (UV) radiation. Microorganisms living in extreme ecosystems are thought to potentially encode for secondary metabolites as a survival strategy. Many secondary metabolites are natural products encoded by a grouping of genes known as biosynthetic gene clusters (BGCs). Natural products have diverse chemical structures and functions which provide competitive advantages for microorganisms and can also have biotechnology applications. In the present study, the diversity of BGC were described in detail for the first time from Shark Bay microbial mats. A total of 1477 BGCs were detected in metagenomic data over a 20 mm mat depth horizon, with the surface layer possessing over 200 BGCs and containing the highest relative abundance of BGCs of all mat layers. Terpene and bacteriocin BGCs were highly represented and their natural products are proposed to have important roles in ecosystem function in these mat systems. Interestingly, potentially novel BGCs were detected from Heimdallarchaeota and Lokiarchaeota, two evolutionarily significant archaeal phyla not previously known to possess BGCs. This study provides new insights into how secondary metabolites from BGCs may enable diverse microbial mat communities to adapt to extreme environments. |
format | Online Article Text |
id | pubmed-7472256 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-74722562020-09-23 Discovery of an Abundance of Biosynthetic Gene Clusters in Shark Bay Microbial Mats Chen, Ray Wong, Hon Lun Kindler, Gareth S. MacLeod, Fraser Iain Benaud, Nicole Ferrari, Belinda C. Burns, Brendan P. Front Microbiol Microbiology Microbial mats are geobiological multilayered ecosystems that have significant evolutionary value in understanding the evolution of early life on Earth. Shark Bay, Australia has some of the best examples of modern microbial mats thriving under harsh conditions of high temperatures, salinity, desiccation, and ultraviolet (UV) radiation. Microorganisms living in extreme ecosystems are thought to potentially encode for secondary metabolites as a survival strategy. Many secondary metabolites are natural products encoded by a grouping of genes known as biosynthetic gene clusters (BGCs). Natural products have diverse chemical structures and functions which provide competitive advantages for microorganisms and can also have biotechnology applications. In the present study, the diversity of BGC were described in detail for the first time from Shark Bay microbial mats. A total of 1477 BGCs were detected in metagenomic data over a 20 mm mat depth horizon, with the surface layer possessing over 200 BGCs and containing the highest relative abundance of BGCs of all mat layers. Terpene and bacteriocin BGCs were highly represented and their natural products are proposed to have important roles in ecosystem function in these mat systems. Interestingly, potentially novel BGCs were detected from Heimdallarchaeota and Lokiarchaeota, two evolutionarily significant archaeal phyla not previously known to possess BGCs. This study provides new insights into how secondary metabolites from BGCs may enable diverse microbial mat communities to adapt to extreme environments. Frontiers Media S.A. 2020-08-21 /pmc/articles/PMC7472256/ /pubmed/32973707 http://dx.doi.org/10.3389/fmicb.2020.01950 Text en Copyright © 2020 Chen, Wong, Kindler, MacLeod, Benaud, Ferrari and Burns. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Microbiology Chen, Ray Wong, Hon Lun Kindler, Gareth S. MacLeod, Fraser Iain Benaud, Nicole Ferrari, Belinda C. Burns, Brendan P. Discovery of an Abundance of Biosynthetic Gene Clusters in Shark Bay Microbial Mats |
title | Discovery of an Abundance of Biosynthetic Gene Clusters in Shark Bay Microbial Mats |
title_full | Discovery of an Abundance of Biosynthetic Gene Clusters in Shark Bay Microbial Mats |
title_fullStr | Discovery of an Abundance of Biosynthetic Gene Clusters in Shark Bay Microbial Mats |
title_full_unstemmed | Discovery of an Abundance of Biosynthetic Gene Clusters in Shark Bay Microbial Mats |
title_short | Discovery of an Abundance of Biosynthetic Gene Clusters in Shark Bay Microbial Mats |
title_sort | discovery of an abundance of biosynthetic gene clusters in shark bay microbial mats |
topic | Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7472256/ https://www.ncbi.nlm.nih.gov/pubmed/32973707 http://dx.doi.org/10.3389/fmicb.2020.01950 |
work_keys_str_mv | AT chenray discoveryofanabundanceofbiosyntheticgeneclustersinsharkbaymicrobialmats AT wonghonlun discoveryofanabundanceofbiosyntheticgeneclustersinsharkbaymicrobialmats AT kindlergareths discoveryofanabundanceofbiosyntheticgeneclustersinsharkbaymicrobialmats AT macleodfraseriain discoveryofanabundanceofbiosyntheticgeneclustersinsharkbaymicrobialmats AT benaudnicole discoveryofanabundanceofbiosyntheticgeneclustersinsharkbaymicrobialmats AT ferraribelindac discoveryofanabundanceofbiosyntheticgeneclustersinsharkbaymicrobialmats AT burnsbrendanp discoveryofanabundanceofbiosyntheticgeneclustersinsharkbaymicrobialmats |