Cargando…

Ambient Backscattering-Enabled SWIPT Relaying System with a Nonlinear Energy Harvesting Model

Since radio frequency (RF) signals can be used for both information transmission and energy harvesting, RF-based energy harvesting is capable of integrating with other existing communication techniques for providing better rate–energy tradeoff and quality-of-service. Within the context of an RF-base...

Descripción completa

Detalles Bibliográficos
Autores principales: Nguyen, Thu L. N., Kim, Jin-Young, Shin, Yoan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7472265/
https://www.ncbi.nlm.nih.gov/pubmed/32823608
http://dx.doi.org/10.3390/s20164534
_version_ 1783578948952653824
author Nguyen, Thu L. N.
Kim, Jin-Young
Shin, Yoan
author_facet Nguyen, Thu L. N.
Kim, Jin-Young
Shin, Yoan
author_sort Nguyen, Thu L. N.
collection PubMed
description Since radio frequency (RF) signals can be used for both information transmission and energy harvesting, RF-based energy harvesting is capable of integrating with other existing communication techniques for providing better rate–energy tradeoff and quality-of-service. Within the context of an RF-based energy harvesting relaying network, a relay node not only acts as an intermediate node to help the delivery from source to destination, but also harvests energy from an RF dedicated source to prolong its lifetime. Thus, it brings diversity gain and coverage extension as well as provides extra energy for data transmission. This paper investigates a system that enables ambient backscattering communication-assisted simultaneous wireless information and power transfer at the relay. In the proposed system, a backscatter device plays a role as a relay to meet sustainable network coverage and to harvest ambient energy as well. With a power splitting (PS) scheme, we first investigate a nonlinear energy harvesting model at the relay node. In order to adapt to the channel gains, a dynamic PS ratio is required to perform well in changing environments. Moreover, we derive mathematical expressions for the outage probability and the achievable system throughput. Numerical results show the effects of various system parameters on the outage probability and the system throughput performance.
format Online
Article
Text
id pubmed-7472265
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-74722652020-09-04 Ambient Backscattering-Enabled SWIPT Relaying System with a Nonlinear Energy Harvesting Model Nguyen, Thu L. N. Kim, Jin-Young Shin, Yoan Sensors (Basel) Article Since radio frequency (RF) signals can be used for both information transmission and energy harvesting, RF-based energy harvesting is capable of integrating with other existing communication techniques for providing better rate–energy tradeoff and quality-of-service. Within the context of an RF-based energy harvesting relaying network, a relay node not only acts as an intermediate node to help the delivery from source to destination, but also harvests energy from an RF dedicated source to prolong its lifetime. Thus, it brings diversity gain and coverage extension as well as provides extra energy for data transmission. This paper investigates a system that enables ambient backscattering communication-assisted simultaneous wireless information and power transfer at the relay. In the proposed system, a backscatter device plays a role as a relay to meet sustainable network coverage and to harvest ambient energy as well. With a power splitting (PS) scheme, we first investigate a nonlinear energy harvesting model at the relay node. In order to adapt to the channel gains, a dynamic PS ratio is required to perform well in changing environments. Moreover, we derive mathematical expressions for the outage probability and the achievable system throughput. Numerical results show the effects of various system parameters on the outage probability and the system throughput performance. MDPI 2020-08-13 /pmc/articles/PMC7472265/ /pubmed/32823608 http://dx.doi.org/10.3390/s20164534 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Nguyen, Thu L. N.
Kim, Jin-Young
Shin, Yoan
Ambient Backscattering-Enabled SWIPT Relaying System with a Nonlinear Energy Harvesting Model
title Ambient Backscattering-Enabled SWIPT Relaying System with a Nonlinear Energy Harvesting Model
title_full Ambient Backscattering-Enabled SWIPT Relaying System with a Nonlinear Energy Harvesting Model
title_fullStr Ambient Backscattering-Enabled SWIPT Relaying System with a Nonlinear Energy Harvesting Model
title_full_unstemmed Ambient Backscattering-Enabled SWIPT Relaying System with a Nonlinear Energy Harvesting Model
title_short Ambient Backscattering-Enabled SWIPT Relaying System with a Nonlinear Energy Harvesting Model
title_sort ambient backscattering-enabled swipt relaying system with a nonlinear energy harvesting model
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7472265/
https://www.ncbi.nlm.nih.gov/pubmed/32823608
http://dx.doi.org/10.3390/s20164534
work_keys_str_mv AT nguyenthuln ambientbackscatteringenabledswiptrelayingsystemwithanonlinearenergyharvestingmodel
AT kimjinyoung ambientbackscatteringenabledswiptrelayingsystemwithanonlinearenergyharvestingmodel
AT shinyoan ambientbackscatteringenabledswiptrelayingsystemwithanonlinearenergyharvestingmodel