Cargando…

A Novel Approach to Condition Monitoring of the Cutting Process Using Recurrent Neural Networks

Condition monitoring is a fundamental part of machining, as well as other manufacturing processes where, generally, there are parts that wear out and have to be replaced. Devising proper condition monitoring has been a concern of many researchers, but there is still a lack of robustness and efficien...

Descripción completa

Detalles Bibliográficos
Autores principales: Silva, Rui, Araújo, António
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7472293/
https://www.ncbi.nlm.nih.gov/pubmed/32796675
http://dx.doi.org/10.3390/s20164493
Descripción
Sumario:Condition monitoring is a fundamental part of machining, as well as other manufacturing processes where, generally, there are parts that wear out and have to be replaced. Devising proper condition monitoring has been a concern of many researchers, but there is still a lack of robustness and efficiency, most often hindered by the system’s complexity or otherwise limited by the inherent noisy signals, a characteristic of industrial processes. The vast majority of condition monitoring approaches do not take into account the temporal sequence when modelling and hence lose an intrinsic part of the context of an actual time-dependent process, fundamental to processes such as cutting. The proposed system uses a multisensory approach to gather information from the cutting process, which is then modelled by a recurrent neural network, capturing the evolutive pattern of wear over time. The system was tested with realistic cutting conditions, and the results show great effectiveness and accuracy with just a few cutting tests. The use of recurrent neural networks demonstrates the potential of such an approach for other time-dependent industrial processes under noisy conditions.