Cargando…
Graph Eigen Decomposition-Based Feature-Selection Method for Epileptic Seizure Detection Using Electroencephalography †
Epileptic seizure is a sudden alteration of behavior owing to a temporary change in the electrical functioning of the brain. There is an urgent demand for an automatic epilepsy detection system using electroencephalography (EEG) for clinical application. In this paper, the EEG signal is divided into...
Autores principales: | Molla, Md. Khademul Islam, Hassan, Kazi Mahmudul, Islam, Md. Rabiul, Tanaka, Toshihisa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7472294/ https://www.ncbi.nlm.nih.gov/pubmed/32824708 http://dx.doi.org/10.3390/s20164639 |
Ejemplares similares
-
Artifact suppression and analysis of brain activities with electroencephalography signals
por: Rashed-Al-Mahfuz, Md., et al.
Publicado: (2013) -
Statistical Features in High-Frequency Bands of Interictal iEEG Work Efficiently in Identifying the Seizure Onset Zone in Patients with Focal Epilepsy
por: Akter, Most. Sheuli, et al.
Publicado: (2020) -
Epileptic seizure focus detection from interictal electroencephalogram: a survey
por: Islam, Md. Rabiul, et al.
Publicado: (2022) -
Multiband entropy-based feature-extraction method for automatic identification of epileptic focus based on high-frequency components in interictal iEEG
por: Akter, Most. Sheuli, et al.
Publicado: (2020) -
Detection of Epileptic Seizures Using Phase–Amplitude Coupling in Intracranial Electroencephalography
por: Edakawa, Kohtaroh, et al.
Publicado: (2016)