Cargando…

Iron Deposits in Periaqueductal Gray Matter Are Associated with Poor Response to OnabotulinumtoxinA in Chronic Migraine

Previous studies have reported increased brain deposits of iron in patients with chronic migraine (CM). This study aims to determine the relation between iron deposits and outcome after treatment with OnabotulinumtoxinA (OnabotA). Demographic and clinical data were collected for this study through a...

Descripción completa

Detalles Bibliográficos
Autores principales: Domínguez Vivero, Clara, Leira, Yago, Saavedra Piñeiro, Marta, Rodríguez-Osorio, Xiana, Ramos-Cabrer, Pedro, Villalba Martín, Carmen, Sobrino, Tomás, Campos, Francisco, Castillo, José, Leira, Rogelio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7472356/
https://www.ncbi.nlm.nih.gov/pubmed/32731573
http://dx.doi.org/10.3390/toxins12080479
Descripción
Sumario:Previous studies have reported increased brain deposits of iron in patients with chronic migraine (CM). This study aims to determine the relation between iron deposits and outcome after treatment with OnabotulinumtoxinA (OnabotA). Demographic and clinical data were collected for this study through a prospective cohort study including 62 CM patients treated with OnabotA in the Hospital Clínico Universitario de Santiago de Compostela (Spain). Demographic and clinical variables were registered. Selected biomarkers in plasma during interictal periods (calcitonin gene-related peptide (CGRP) and pentraxin-3 (PTX3)) and neuroimaging changes (iron deposits in the red nucleus (RN), substantia nigra (SN), globus pallidus (GP), and periaqueductal gray matter (PAG), and white matter lesions (WML)) were determined. Subjects were classified in responders (≥50% reduction in headache days) or non-responders (<50%). Responders to treatment were younger (mean age difference = 12.2; 95% confidence interval (CI): 5.4–18.9, p = 0.001), showed higher serum levels of CGRP (≥50 ng/mL) and PTX3 (≥1000 pg/mL) and smaller iron deposits in the GP and PAG (mean difference = 805.0; 95% CI: 37.9–1572.1 μL, p = 0.040 and mean difference = 69.8; 95% CI: 31.0–108.6 μL, p = 0.008; respectively). Differences in PAG iron deposits remained significant after adjusting for age (mean difference = 65.7; 95% CI: 22.8–108.6 μL, p = 0.003) and were associated with poor response to OnabotA after adjustment for clinical and biochemical variables (odds ratio (OR) = 0.963; 95% CI: 0.927–0.997, p = 0.041). We conclude that larger PAG iron deposits are associated with poor response to OnabotA in CM.