Cargando…
Benchmark-Based Reference Model for Evaluating Botnet Detection Tools Driven by Traffic-Flow Analytics
Botnets are some of the most recurrent cyber-threats, which take advantage of the wide heterogeneity of endpoint devices at the Edge of the emerging communication environments for enabling the malicious enforcement of fraud and other adversarial tactics, including malware, data leaks or denial of se...
Autores principales: | Huancayo Ramos, Katherinne Shirley, Sotelo Monge, Marco Antonio, Maestre Vidal, Jorge |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7472400/ https://www.ncbi.nlm.nih.gov/pubmed/32806550 http://dx.doi.org/10.3390/s20164501 |
Ejemplares similares
-
An efficient method to detect periodic behavior in botnet traffic by analyzing control plane traffic
por: AsSadhan, Basil, et al.
Publicado: (2014) -
DReLAB - Deep REinforcement Learning Adversarial Botnet: A benchmark dataset for adversarial attacks against botnet Intrusion Detection Systems
por: Venturi, Andrea, et al.
Publicado: (2020) -
Reasoning and Knowledge Acquisition Framework for 5G Network Analytics
por: Sotelo Monge, Marco Antonio, et al.
Publicado: (2017) -
Hybrid rule-based botnet detection approach using machine learning for analysing DNS traffic
por: Al-mashhadi, Saif, et al.
Publicado: (2021) -
Botnets: The Killer Web App
por: Schiller, Craig A
Publicado: (2007)