Cargando…

Dopant Concentration Controls Quasi-Static Electrostrictive Strain Response of Ceria Ceramics

[Image: see text] Electromechanically active ceramic materials, piezoelectrics and electrostrictors, provide the backbone of a variety of consumer technologies. Gd- and Sm-doped ceria are ion conducting ceramics, finding application in fuel cells, oxygen sensors, and, potentially, as memristor mater...

Descripción completa

Detalles Bibliográficos
Autores principales: Varenik, Maxim, Nino, Juan Claudio, Wachtel, Ellen, Kim, Sangtae, Yeheskel, Ori, Yavo, Nimrod, Lubomirsky, Igor
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7472436/
https://www.ncbi.nlm.nih.gov/pubmed/32702965
http://dx.doi.org/10.1021/acsami.0c07799
Descripción
Sumario:[Image: see text] Electromechanically active ceramic materials, piezoelectrics and electrostrictors, provide the backbone of a variety of consumer technologies. Gd- and Sm-doped ceria are ion conducting ceramics, finding application in fuel cells, oxygen sensors, and, potentially, as memristor materials. While optimal design of ceria-based devices requires a thorough understanding of their mechanical and electromechanical properties, reports of systematic study of the effect of dopant concentration on the electromechanical behavior of ceria-based ceramics are lacking. Here we report the longitudinal electrostriction strain coefficient (M(33)) of dense RE(x)Ce(1–x)O(2–x/2) (x ≤ 0.25) ceramic pellets, where RE = Gd or Sm, measured under ambient conditions as a function of dopant concentration within the frequency range f = 0.15–350 Hz and electric field amplitude E ≤ 0.5 MV/m. For >100 Hz, all ceramic pellets tested, independent of dopant concentration, exhibit longitudinal electrostriction strain coefficient with magnitude on the order of 10(–18) m(2)/V(2). The quasi-static (f < 1 Hz) electrostriction strain coefficient for undoped ceria is comparable in magnitude, while introducing 5 mol % Gd or 5 mol % Sm produces an increase in M(33) by up to 2 orders of magnitude. For x ≤ 0.1 (Gd)–0.15 (Sm), the Debye-type relaxation time constant (τ) is in the range 60–300 ms. The inverse relationship between dopant concentration and quasi-static electrostrictive strain parallels the anelasticity and ionic conductivity of Gd- and Sm-doped ceria ceramics, indicating that electrostriction is partially governed by ordering of vacancies and changes in local symmetry.