Cargando…
Dimensionality Reduction of Hyperspectral Images Based on Improved Spatial–Spectral Weight Manifold Embedding
Due to the spectral complexity and high dimensionality of hyperspectral images (HSIs), the processing of HSIs is susceptible to the curse of dimensionality. In addition, the classification results of ground truth are not ideal. To overcome the problem of the curse of dimensionality and improve class...
Autores principales: | Liu, Hong, Xia, Kewen, Li, Tiejun, Ma, Jie, Owoola, Eunice |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7472477/ https://www.ncbi.nlm.nih.gov/pubmed/32784692 http://dx.doi.org/10.3390/s20164413 |
Ejemplares similares
-
Tomato Leaf Disease Recognition on Leaf Images Based on Fine-Tuned Residual Neural Networks
por: Kanda, Paul Shekonya, et al.
Publicado: (2022) -
Spectral-spatial classification of hyperspectral remote sensing images
por: Benediktsson, Jon Atli, et al.
Publicado: (2015) -
Manifold regularization for sparse unmixing of hyperspectral images
por: Liu, Junmin, et al.
Publicado: (2016) -
On-Demand Charging Management Model and Its Optimization for Wireless Renewable Sensor Networks
por: Mukase, Sandrine, et al.
Publicado: (2022) -
Spatial–Spectral Constrained Adaptive Graph for Hyperspectral Image Clustering
por: Zhu, Xing-Hui, et al.
Publicado: (2022)