Cargando…
Low-Rank and Sparse Recovery of Human Gait Data
Due to occlusion or detached markers, information can often be lost while capturing human motion with optical tracking systems. Based on three natural properties of human gait movement, this study presents two different approaches to recover corrupted motion data. These properties are used to define...
Autores principales: | Kamali, Kaveh, Akbari, Ali Akbar, Desrosiers, Christian, Akbarzadeh, Alireza, Otis, Martin J.-D., Ayena, Johannes C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7472490/ https://www.ncbi.nlm.nih.gov/pubmed/32823505 http://dx.doi.org/10.3390/s20164525 |
Ejemplares similares
-
Low-Rank and Sparse Matrix Decomposition for Genetic
Interaction Data
por: Wang, Yishu, et al.
Publicado: (2015) -
Low-Rank and Sparse Matrix Recovery for Hyperspectral Image Reconstruction Using Bayesian Learning
por: Zhang, Yanbin, et al.
Publicado: (2022) -
Wearable Devices for Classification of Inadequate Posture at Work Using Neural Networks
por: Barkallah, Eya, et al.
Publicado: (2017) -
Rank Awareness in Group-Sparse Recovery of Multi-Echo MR Images
por: Majumdar, Angshul, et al.
Publicado: (2013) -
Unmixing Biological Fluorescence Image Data with Sparse and Low-Rank Poisson Regression
por: Wang, Ruogu, et al.
Publicado: (2023)