Cargando…
Complete genome dynamics of a dominant-lineage strain of Xanthomonas oryzae pv. oryzae harbouring a novel plasmid encoding a type IV secretion system
Xanthomonas oryzae pv. oryzae (Xoo) is a serious pathogen causing bacterial blight disease in rice. Population genomic studies have revealed that rampant inter-strain rather than inter-lineage differences are contributing to the evolutionary success of this pathogen. Here, we report the complete gen...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Microbiology Society
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7472545/ https://www.ncbi.nlm.nih.gov/pubmed/32974563 http://dx.doi.org/10.1099/acmi.0.000063 |
Sumario: | Xanthomonas oryzae pv. oryzae (Xoo) is a serious pathogen causing bacterial blight disease in rice. Population genomic studies have revealed that rampant inter-strain rather than inter-lineage differences are contributing to the evolutionary success of this pathogen. Here, we report the complete genome sequence of BXO1, a strain of Xoo belonging to a dominant lineage from India. A complete genome-based investigation revealed the presence of two plasmids, pBXO1-1 (66.7 kb) and pBXO1-2 (25.6 kb). The pBXO1-1 plasmid encodes 71 genes, 38 of which encode hypothetical proteins of unknown function. However, these hypothetical genes possess atypical GC content, pointing towards their acquisition and movement through horizontal gene transfer. Interestingly, pBXO1-2 encodes a type IV secretion system (T4SS), which is known to play an important role in the conjugative transfer of genetic material, and also provides fitness to pathogenic bacteria for their enhanced survival. Neither plasmid has been reported previously in any other complete Xoo genome published to date. Our analysis also revealed that the pBXO1-2 plasmid is present in Xanthomonas albilineans str. GPE PC73, which is known to cause leaf scald, a lethal disease in sugarcane. Our complete genome sequence analysis of BXO1 has provided us with detailed insights into the two novel strain-specific plasmids, in addition to decoding their functional capabilities, which were not assessable when using the draft genome sequence of the strain. Overall, our study has revealed the mobility of a novel T4SS in two pathogenic species of Xanthomonas that infect the vascular tissues of two economically important monocot plants, i.e. rice and sugarcane. |
---|