Cargando…

Efficient occlusion of oil droplets within calcite crystals

It is well known that oil and water do not mix. Similarly, the incorporation of oil droplets within inorganic crystals is highly counter-intuitive because there is a large difference in surface energy for these two components. Nevertheless, herein we demonstrate the efficient occlusion of ∼250–500 n...

Descripción completa

Detalles Bibliográficos
Autores principales: Ning, Yin, Meldrum, Fiona C., Armes, Steven P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Royal Society of Chemistry 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7472555/
https://www.ncbi.nlm.nih.gov/pubmed/32953001
http://dx.doi.org/10.1039/c9sc03372f
Descripción
Sumario:It is well known that oil and water do not mix. Similarly, the incorporation of oil droplets within inorganic crystals is highly counter-intuitive because there is a large difference in surface energy for these two components. Nevertheless, herein we demonstrate the efficient occlusion of ∼250–500 nm oil droplets within 20–40 μm calcite crystals. These droplets are stabilized using various amphiphilic poly(methacrylic acid)–poly(n-alkyl methacrylate) diblock copolymer emulsifiers. Both copolymer concentration and diblock compositions affect the extent of occlusion, with optimized conditions producing calcite crystals containing up to 11% oil by mass. Moreover, compressive forces exerted by the growing crystals cause significant deformation of the oil droplets during occlusion. In principle, this protocol enables the incorporation of water-insoluble dyes or hydrophobic nanoparticles within calcite, which is a cheap, naturally-occurring and environmentally-benign mineral. The single crystal nature of this host lattice ensures efficient retention of such guests, while lowering the solution pH leads to triggered release via acid dissolution.