Cargando…
Evaluation of Hyperparameter Optimization in Machine and Deep Learning Methods for Decoding Imagined Speech EEG
Classification of electroencephalography (EEG) signals corresponding to imagined speech production is important for the development of a direct-speech brain–computer interface (DS-BCI). Deep learning (DL) has been utilized with great success across several domains. However, it remains an open questi...
Autores principales: | Cooney, Ciaran, Korik, Attila, Folli, Raffaella, Coyle, Damien |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7472624/ https://www.ncbi.nlm.nih.gov/pubmed/32824559 http://dx.doi.org/10.3390/s20164629 |
Ejemplares similares
-
Decoding Imagined 3D Arm Movement Trajectories From EEG to Control Two Virtual Arms—A Pilot Study
por: Korik, Attila, et al.
Publicado: (2019) -
Decoding Imagined 3D Hand Movement Trajectories From EEG: Evidence to Support the Use of Mu, Beta, and Low Gamma Oscillations
por: Korik, Attila, et al.
Publicado: (2018) -
Neurolinguistics Research Advancing Development of a Direct-Speech Brain-Computer Interface
por: Cooney, Ciaran, et al.
Publicado: (2018) -
A State-of-the-Art Review of EEG-Based Imagined Speech Decoding
por: Lopez-Bernal, Diego, et al.
Publicado: (2022) -
Imagined Speech Classification Using EEG and Deep Learning
por: Abdulghani, Mokhles M., et al.
Publicado: (2023)