Cargando…
Artificial Neural Networks in Motion Analysis—Applications of Unsupervised and Heuristic Feature Selection Techniques
The use of machine learning to estimate joint angles from inertial sensors is a promising approach to in-field motion analysis. In this context, the simplification of the measurements by using a small number of sensors is of great interest. Neural networks have the opportunity to estimate joint angl...
Autores principales: | Mundt, Marion, Koeppe, Arnd, Bamer, Franz, David, Sina, Markert, Bernd |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7472626/ https://www.ncbi.nlm.nih.gov/pubmed/32824159 http://dx.doi.org/10.3390/s20164581 |
Ejemplares similares
-
Estimation of Gait Mechanics Based on Simulated and Measured IMU Data Using an Artificial Neural Network
por: Mundt, Marion, et al.
Publicado: (2020) -
Artificial intelligence and heuristic programming
Publicado: (1971) -
Group Based Unsupervised Feature Selection
por: Perera, Kushani, et al.
Publicado: (2020) -
Utility metric for unsupervised feature selection
por: Villa, Amalia, et al.
Publicado: (2021) -
An Unsupervised Neural Network Feature Selection and 1D Convolution Neural Network Classification for Screening of Parkinsonism
por: Mian, Tariq Saeed
Publicado: (2022)