Cargando…
Leveraging Uncertainties in Softmax Decision-Making Models for Low-Power IoT Devices
Internet of Things (IoT) devices bring us rich sensor data, such as images capturing the environment. One prominent approach to understanding and utilizing such data is image classification which can be effectively solved by deep learning (DL). Combined with cross-entropy loss, softmax has been wide...
Autores principales: | Cho, Chiwoo, Choi, Wooyeol, Kim, Taewoon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7472628/ https://www.ncbi.nlm.nih.gov/pubmed/32824357 http://dx.doi.org/10.3390/s20164603 |
Ejemplares similares
-
Optimal User Association Strategy for Large-Scale IoT Sensor Networks with Mobility on Cloud RANs
por: Kim, Taewoon, et al.
Publicado: (2019) -
Leveraging Deep Learning for IoT Transceiver Identification
por: Gao, Jiayao, et al.
Publicado: (2023) -
Pattern Classification Using Quantized Neural Networks for FPGA-Based Low-Power IoT Devices
por: Biswal, Manas Ranjan, et al.
Publicado: (2022) -
Uncertainty in IoT for Smart Healthcare: Challenges, and Opportunities
por: Tissaoui, Anis, et al.
Publicado: (2020) -
Design of a 900 MHz Dual-Mode SWIPT for Low-Power IoT Devices
por: Abbasizadeh, Hamed, et al.
Publicado: (2019)