Cargando…

Acoustic cavitation generates molecular mercury(ii) hydroxide, Hg(OH)(2), from biphasic water/mercury mixtures

Emulsification of elemental mercury in aqueous solution in the form of grey particles occurs upon exposure to intense sound fields. We show the concomitant formation of molecular Hg(OH)(2) in the solution phase reaching a saturation limit of 0.24 mM at 25 °C. The formation of Hg(OH)(2) is consistent...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Minjun, Rasche, Bertold, Compton, Richard G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Royal Society of Chemistry 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7472659/
https://www.ncbi.nlm.nih.gov/pubmed/32953005
http://dx.doi.org/10.1039/c9sc04743c
_version_ 1783579028150550528
author Yang, Minjun
Rasche, Bertold
Compton, Richard G.
author_facet Yang, Minjun
Rasche, Bertold
Compton, Richard G.
author_sort Yang, Minjun
collection PubMed
description Emulsification of elemental mercury in aqueous solution in the form of grey particles occurs upon exposure to intense sound fields. We show the concomitant formation of molecular Hg(OH)(2) in the solution phase reaching a saturation limit of 0.24 mM at 25 °C. The formation of Hg(OH)(2) is consistent with the ‘hot spot’ model which suggests the formation of OH˙ as a result of acoustic cavitation; such radicals are proposed to combine with Hg to form the Hg(OH)(2) species here characterised using voltammetry.
format Online
Article
Text
id pubmed-7472659
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-74726592020-09-18 Acoustic cavitation generates molecular mercury(ii) hydroxide, Hg(OH)(2), from biphasic water/mercury mixtures Yang, Minjun Rasche, Bertold Compton, Richard G. Chem Sci Chemistry Emulsification of elemental mercury in aqueous solution in the form of grey particles occurs upon exposure to intense sound fields. We show the concomitant formation of molecular Hg(OH)(2) in the solution phase reaching a saturation limit of 0.24 mM at 25 °C. The formation of Hg(OH)(2) is consistent with the ‘hot spot’ model which suggests the formation of OH˙ as a result of acoustic cavitation; such radicals are proposed to combine with Hg to form the Hg(OH)(2) species here characterised using voltammetry. Royal Society of Chemistry 2019-11-22 /pmc/articles/PMC7472659/ /pubmed/32953005 http://dx.doi.org/10.1039/c9sc04743c Text en This journal is © The Royal Society of Chemistry 2020 http://creativecommons.org/licenses/by-nc/3.0/ This article is freely available. This article is licensed under a Creative Commons Attribution Non Commercial 3.0 Unported Licence (CC BY-NC 3.0)
spellingShingle Chemistry
Yang, Minjun
Rasche, Bertold
Compton, Richard G.
Acoustic cavitation generates molecular mercury(ii) hydroxide, Hg(OH)(2), from biphasic water/mercury mixtures
title Acoustic cavitation generates molecular mercury(ii) hydroxide, Hg(OH)(2), from biphasic water/mercury mixtures
title_full Acoustic cavitation generates molecular mercury(ii) hydroxide, Hg(OH)(2), from biphasic water/mercury mixtures
title_fullStr Acoustic cavitation generates molecular mercury(ii) hydroxide, Hg(OH)(2), from biphasic water/mercury mixtures
title_full_unstemmed Acoustic cavitation generates molecular mercury(ii) hydroxide, Hg(OH)(2), from biphasic water/mercury mixtures
title_short Acoustic cavitation generates molecular mercury(ii) hydroxide, Hg(OH)(2), from biphasic water/mercury mixtures
title_sort acoustic cavitation generates molecular mercury(ii) hydroxide, hg(oh)(2), from biphasic water/mercury mixtures
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7472659/
https://www.ncbi.nlm.nih.gov/pubmed/32953005
http://dx.doi.org/10.1039/c9sc04743c
work_keys_str_mv AT yangminjun acousticcavitationgeneratesmolecularmercuryiihydroxidehgoh2frombiphasicwatermercurymixtures
AT raschebertold acousticcavitationgeneratesmolecularmercuryiihydroxidehgoh2frombiphasicwatermercurymixtures
AT comptonrichardg acousticcavitationgeneratesmolecularmercuryiihydroxidehgoh2frombiphasicwatermercurymixtures