Cargando…

An acidic polysaccharide (AGC3) isolated from North American ginseng (Panax quinquefolius) suspension culture as a potential immunomodulatory nutraceutical

Polysaccharides isolated from Panax quinquefolius roots are widely used as nutraceuticals due to their immunomodulatory properties. Despite their popularity, several challenges exist in isolating ginseng root polysaccharides such as batch-to-batch structural inconsistencies and bacterial endotoxin c...

Descripción completa

Detalles Bibliográficos
Autores principales: Ghosh, Rajarshi, Bryant, Daniel L., Arivett, Brock A., Smith, Shannon A., Altman, Elliot, Kline, Paul C., Farone, Anthony L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7473373/
https://www.ncbi.nlm.nih.gov/pubmed/32914137
http://dx.doi.org/10.1016/j.crfs.2020.07.002
Descripción
Sumario:Polysaccharides isolated from Panax quinquefolius roots are widely used as nutraceuticals due to their immunomodulatory properties. Despite their popularity, several challenges exist in isolating ginseng root polysaccharides such as batch-to-batch structural inconsistencies and bacterial endotoxin contamination. A plant tissue culture-based platform offers a potential solution to isolate natural polysaccharide fractions with consistent chemical characteristics and reduced endotoxin content. In this study, an acidic polysaccharide fraction (AGC3) with immunomodulatory properties was isolated from Panax quinquefolius suspension cultures. The heterogeneous fraction (molecular weight: 4.81 and 32.14 kDa), purified by anion exchange chromatography, was predominantly composed of galactose (>60%) along with the presence of rhamnose, arabinose, glucose, glucuronic acid and galacturonic acid. The major glycosidic linkages were found to be t-Galp (47.7%), 4-Galp (15.6%), 2,4-Rhap (8.1%), 6-Galp (8.1%) and 4-GalAp (6.8%). Structural analyses indicated the presence of a pectic rhamnogalacturonan I polysaccharide in AGC3. AGC3 significantly (p < 0.05) stimulated RAW 264.7 murine macrophage cells and primary murine splenocytes by enhancing the production of several immunomodulatory mediators such as IL-6, TNF-α, GM-CSF and MCP-1. The results also indicated the putative roles of NF-κB (p65/RelA) and MAPK (p38) signaling pathways in the immunostimulatory response. Additionally, AGC3 induced murine splenocyte proliferation, another major indicator of immunostimulation. Overall, AGC3 has the potential to be used as an immunostimulatory nutraceutical.