Cargando…
Effect of cysteine addition and heat treatment on the properties and microstructure of a calcium-induced whey protein cold-set gel
A model gel of whey protein isolate (WPI) was prepared by cold gelation with calcium. This system was modified by the addition of free cysteine residues (Cys) at different steps of the process. The WPI cold-set gels obtained were then subjected to heat treatment at 90°C. First, the effect of Cys add...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7473375/ https://www.ncbi.nlm.nih.gov/pubmed/32914103 http://dx.doi.org/10.1016/j.crfs.2019.10.001 |
_version_ | 1783579173627887616 |
---|---|
author | Lavoisier, Anaïs Vilgis, Thomas A. Aguilera, José Miguel |
author_facet | Lavoisier, Anaïs Vilgis, Thomas A. Aguilera, José Miguel |
author_sort | Lavoisier, Anaïs |
collection | PubMed |
description | A model gel of whey protein isolate (WPI) was prepared by cold gelation with calcium. This system was modified by the addition of free cysteine residues (Cys) at different steps of the process. The WPI cold-set gels obtained were then subjected to heat treatment at 90°C. First, the effect of Cys addition on the heat-induced aggregation of WPI was studied through Atomic Force Microscopy (AFM) and infrared spectroscopy (ATR-FTIR), while Cys' effect on cold gelation was observed by AFM, Confocal Laser Scanning Microscopy (CLSM) and oscillatory rheology (amplitude sweeps). The impact of heating on the microstructure and the viscoelastic properties of the WPI cold-set gels were finally investigated through several techniques, including DSC, ATR-FTIR, CLSM, cryo-SEM, and rheological measurements (temperature sweeps). When added during the first step of cold gelation, Cys modified heat-induced aggregation of WPI, resulting in the formation of a denser gel network with a fractal dimension (Df) of 2.8. However, the addition of Cys during the second step of cold gelation led to the formation of highly branched clusters of WPI and a looser gel network was observed (Df = 2.4). In this regard, the use and limitations of oscillatory rheology and the “Kraus model” to determine the Df of WPI cold-set gels was discussed. The viscoelastic properties and the microstructure of the WPI cold-set gels were irreversibly modified by heating. Gels were stiffer, more brittle, and coarser after heat treatment. New disulfide bonds and calcium bridges formed, as well as H-bonded β-sheets, all contributing to the formation of the final gel network structure. |
format | Online Article Text |
id | pubmed-7473375 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-74733752020-09-09 Effect of cysteine addition and heat treatment on the properties and microstructure of a calcium-induced whey protein cold-set gel Lavoisier, Anaïs Vilgis, Thomas A. Aguilera, José Miguel Curr Res Food Sci Article A model gel of whey protein isolate (WPI) was prepared by cold gelation with calcium. This system was modified by the addition of free cysteine residues (Cys) at different steps of the process. The WPI cold-set gels obtained were then subjected to heat treatment at 90°C. First, the effect of Cys addition on the heat-induced aggregation of WPI was studied through Atomic Force Microscopy (AFM) and infrared spectroscopy (ATR-FTIR), while Cys' effect on cold gelation was observed by AFM, Confocal Laser Scanning Microscopy (CLSM) and oscillatory rheology (amplitude sweeps). The impact of heating on the microstructure and the viscoelastic properties of the WPI cold-set gels were finally investigated through several techniques, including DSC, ATR-FTIR, CLSM, cryo-SEM, and rheological measurements (temperature sweeps). When added during the first step of cold gelation, Cys modified heat-induced aggregation of WPI, resulting in the formation of a denser gel network with a fractal dimension (Df) of 2.8. However, the addition of Cys during the second step of cold gelation led to the formation of highly branched clusters of WPI and a looser gel network was observed (Df = 2.4). In this regard, the use and limitations of oscillatory rheology and the “Kraus model” to determine the Df of WPI cold-set gels was discussed. The viscoelastic properties and the microstructure of the WPI cold-set gels were irreversibly modified by heating. Gels were stiffer, more brittle, and coarser after heat treatment. New disulfide bonds and calcium bridges formed, as well as H-bonded β-sheets, all contributing to the formation of the final gel network structure. Elsevier 2019-10-18 /pmc/articles/PMC7473375/ /pubmed/32914103 http://dx.doi.org/10.1016/j.crfs.2019.10.001 Text en © 2019 The Author(s) http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Lavoisier, Anaïs Vilgis, Thomas A. Aguilera, José Miguel Effect of cysteine addition and heat treatment on the properties and microstructure of a calcium-induced whey protein cold-set gel |
title | Effect of cysteine addition and heat treatment on the properties and microstructure of a calcium-induced whey protein cold-set gel |
title_full | Effect of cysteine addition and heat treatment on the properties and microstructure of a calcium-induced whey protein cold-set gel |
title_fullStr | Effect of cysteine addition and heat treatment on the properties and microstructure of a calcium-induced whey protein cold-set gel |
title_full_unstemmed | Effect of cysteine addition and heat treatment on the properties and microstructure of a calcium-induced whey protein cold-set gel |
title_short | Effect of cysteine addition and heat treatment on the properties and microstructure of a calcium-induced whey protein cold-set gel |
title_sort | effect of cysteine addition and heat treatment on the properties and microstructure of a calcium-induced whey protein cold-set gel |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7473375/ https://www.ncbi.nlm.nih.gov/pubmed/32914103 http://dx.doi.org/10.1016/j.crfs.2019.10.001 |
work_keys_str_mv | AT lavoisieranais effectofcysteineadditionandheattreatmentonthepropertiesandmicrostructureofacalciuminducedwheyproteincoldsetgel AT vilgisthomasa effectofcysteineadditionandheattreatmentonthepropertiesandmicrostructureofacalciuminducedwheyproteincoldsetgel AT aguilerajosemiguel effectofcysteineadditionandheattreatmentonthepropertiesandmicrostructureofacalciuminducedwheyproteincoldsetgel |