Cargando…
Seismicity on tidally active solid-surface worlds
Tidal interactions between planets or stars and the bodies that orbit them dissipate energy in their interiors. The dissipated energy heats the interior and a fraction of that energy will be released as seismic energy. Here we formalize a model to describe the tidally-driven seismic activity on plan...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7473397/ https://www.ncbi.nlm.nih.gov/pubmed/32905557 http://dx.doi.org/10.1016/j.icarus.2019.113466 |
_version_ | 1783579176833384448 |
---|---|
author | Hurford, T.A. Henning, W.G. Maguire, R. Lekic, V. Schmerr, N. Panning, M. Bray, V.J. Manga, M. Kattenhorn, S.A. Quick, L.C. Rhoden, A.R. |
author_facet | Hurford, T.A. Henning, W.G. Maguire, R. Lekic, V. Schmerr, N. Panning, M. Bray, V.J. Manga, M. Kattenhorn, S.A. Quick, L.C. Rhoden, A.R. |
author_sort | Hurford, T.A. |
collection | PubMed |
description | Tidal interactions between planets or stars and the bodies that orbit them dissipate energy in their interiors. The dissipated energy heats the interior and a fraction of that energy will be released as seismic energy. Here we formalize a model to describe the tidally-driven seismic activity on planetary bodies based on tidal dissipation. To constrain the parameters of our model we use the seismic activity of the Moon, driven by tidal dissipation from the Earth-Moon interactions. We then apply this model to predict the amount of seismic energy release and largest seismic events on other moons in our Solar System and exoplanetary bodies. We find that many moons in the Solar System should be more seismically active than the Earth’s Moon and many exoplanets should exhibit more seismic activity than the Earth. Finally, we examine how temporal-spatial variations in tidal dissipation manifest as variations in the locations and timing of seismic events on these bodies. |
format | Online Article Text |
id | pubmed-7473397 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
record_format | MEDLINE/PubMed |
spelling | pubmed-74733972020-10-30 Seismicity on tidally active solid-surface worlds Hurford, T.A. Henning, W.G. Maguire, R. Lekic, V. Schmerr, N. Panning, M. Bray, V.J. Manga, M. Kattenhorn, S.A. Quick, L.C. Rhoden, A.R. Icarus Article Tidal interactions between planets or stars and the bodies that orbit them dissipate energy in their interiors. The dissipated energy heats the interior and a fraction of that energy will be released as seismic energy. Here we formalize a model to describe the tidally-driven seismic activity on planetary bodies based on tidal dissipation. To constrain the parameters of our model we use the seismic activity of the Moon, driven by tidal dissipation from the Earth-Moon interactions. We then apply this model to predict the amount of seismic energy release and largest seismic events on other moons in our Solar System and exoplanetary bodies. We find that many moons in the Solar System should be more seismically active than the Earth’s Moon and many exoplanets should exhibit more seismic activity than the Earth. Finally, we examine how temporal-spatial variations in tidal dissipation manifest as variations in the locations and timing of seismic events on these bodies. 2020-03-01 2019-10-30 /pmc/articles/PMC7473397/ /pubmed/32905557 http://dx.doi.org/10.1016/j.icarus.2019.113466 Text en This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Hurford, T.A. Henning, W.G. Maguire, R. Lekic, V. Schmerr, N. Panning, M. Bray, V.J. Manga, M. Kattenhorn, S.A. Quick, L.C. Rhoden, A.R. Seismicity on tidally active solid-surface worlds |
title | Seismicity on tidally active solid-surface worlds |
title_full | Seismicity on tidally active solid-surface worlds |
title_fullStr | Seismicity on tidally active solid-surface worlds |
title_full_unstemmed | Seismicity on tidally active solid-surface worlds |
title_short | Seismicity on tidally active solid-surface worlds |
title_sort | seismicity on tidally active solid-surface worlds |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7473397/ https://www.ncbi.nlm.nih.gov/pubmed/32905557 http://dx.doi.org/10.1016/j.icarus.2019.113466 |
work_keys_str_mv | AT hurfordta seismicityontidallyactivesolidsurfaceworlds AT henningwg seismicityontidallyactivesolidsurfaceworlds AT maguirer seismicityontidallyactivesolidsurfaceworlds AT lekicv seismicityontidallyactivesolidsurfaceworlds AT schmerrn seismicityontidallyactivesolidsurfaceworlds AT panningm seismicityontidallyactivesolidsurfaceworlds AT brayvj seismicityontidallyactivesolidsurfaceworlds AT mangam seismicityontidallyactivesolidsurfaceworlds AT kattenhornsa seismicityontidallyactivesolidsurfaceworlds AT quicklc seismicityontidallyactivesolidsurfaceworlds AT rhodenar seismicityontidallyactivesolidsurfaceworlds |