Cargando…

Development and evaluation of next-generation cardiotoxicity assay based on embryonic stem cell-derived cardiomyocytes

In accordance with requirements of the ICH S7B safety pharma-cology guidelines, numerous next-generation cardiotoxicity studies using human stem cell-derived cardiomyocytes (CMs) are being conducted globally. Although several stem cell-derived CMs are being developed for commercialization, there is...

Descripción completa

Detalles Bibliográficos
Autores principales: Ryu, Bokyeong, Choi, Seong Woo, Lee, Seul-Gi, Jeong, Young-Hoon, Kim, Ukjin, Kim, Jin, Jung, Cho-Rok, Chung, Hyung-Min, Park, Jae-Hak, Kim, C-Yoon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Korean Society for Biochemistry and Molecular Biology 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7473479/
https://www.ncbi.nlm.nih.gov/pubmed/32336319
http://dx.doi.org/10.5483/BMBRep.2020.53.8.022
Descripción
Sumario:In accordance with requirements of the ICH S7B safety pharma-cology guidelines, numerous next-generation cardiotoxicity studies using human stem cell-derived cardiomyocytes (CMs) are being conducted globally. Although several stem cell-derived CMs are being developed for commercialization, there is insufficient research to verify if these CMs can replace animal experiments. In this study, in vitro high-efficiency CMs derived from human embryonic stem cells (hESC-CMs) were compared with Sprague-Dawley rats as in vivo experimental animals, and primary cultured in vitro rat-CMs for cardiotoxicity tests. In vivo rats were administrated with two consecutive injections of 100 mg/kg isoproterenol, 15 mg/kg doxorubicin, or 100 mg/kg nifedipine, while in vitro rat-CMs and hESC-CMs were treated with 5 µM isoproterenol, 5 µM doxorubicin, and 50 µM nifedipine. We have verified the equivalence of hESC-CMs assessments over various molecular biological markers, morphological analysis. Also, we have identified the advantages of hESC-CMs, which can distinguish between species variability, over electrophysiological analysis of ion channels against cardiac damage. Our findings demonstrate the possibility and advantage of high-effi-ciency hESC-CMs as next-generation cardiotoxicity assessment.