Cargando…
Are open set classification methods effective on large-scale datasets?
Supervised classification methods often assume the train and test data distributions are the same and that all classes in the test set are present in the training set. However, deployed classifiers often require the ability to recognize inputs from outside the training set as unknowns. This problem...
Autores principales: | Roady, Ryne, Hayes, Tyler L., Kemker, Ronald, Gonzales, Ayesha, Kanan, Christopher |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7473573/ https://www.ncbi.nlm.nih.gov/pubmed/32886692 http://dx.doi.org/10.1371/journal.pone.0238302 |
Ejemplares similares
-
Scalable Iterative Classification for Sanitizing Large-Scale Datasets
por: Li, Bo, et al.
Publicado: (2017) -
Large-scale annotated dataset for cochlear hair cell detection and classification
por: Buswinka, Christopher J., et al.
Publicado: (2023) -
CloudDenseNet: Lightweight Ground-Based Cloud Classification Method for Large-Scale Datasets Based on Reconstructed DenseNet
por: Li, Sheng, et al.
Publicado: (2023) -
Open Access to Large Scale Datasets Is Needed to Translate Knowledge of Cancer Heterogeneity into Better Patient Outcomes
por: Beck, Andrew H.
Publicado: (2015) -
A Large-Scale COVID-19 Twitter Chatter Dataset for Open Scientific Research—An International Collaboration
por: Banda, Juan M., et al.
Publicado: (2021)