Cargando…
Integrating fish models in tuberculosis vaccine development
Tuberculosis is a chronic infection by Mycobacterium tuberculosis that results in over 1.5 million deaths worldwide each year. Currently, there is only one vaccine against tuberculosis, the Bacillus Calmette–Guérin (BCG) vaccine. Despite widespread vaccination programmes, over 10 million new M. tube...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Company of Biologists Ltd
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7473647/ https://www.ncbi.nlm.nih.gov/pubmed/32859577 http://dx.doi.org/10.1242/dmm.045716 |
_version_ | 1783579218077024256 |
---|---|
author | Saralahti, Anni K. Uusi-Mäkelä, Meri I. E. Niskanen, Mirja T. Rämet, Mika |
author_facet | Saralahti, Anni K. Uusi-Mäkelä, Meri I. E. Niskanen, Mirja T. Rämet, Mika |
author_sort | Saralahti, Anni K. |
collection | PubMed |
description | Tuberculosis is a chronic infection by Mycobacterium tuberculosis that results in over 1.5 million deaths worldwide each year. Currently, there is only one vaccine against tuberculosis, the Bacillus Calmette–Guérin (BCG) vaccine. Despite widespread vaccination programmes, over 10 million new M. tuberculosis infections are diagnosed yearly, with almost half a million cases caused by antibiotic-resistant strains. Novel vaccination strategies concentrate mainly on replacing BCG or boosting its efficacy and depend on animal models that accurately recapitulate the human disease. However, efforts to produce new vaccines against an M. tuberculosis infection have encountered several challenges, including the complexity of M. tuberculosis pathogenesis and limited knowledge of the protective immune responses. The preclinical evaluation of novel tuberculosis vaccine candidates is also hampered by the lack of an appropriate animal model that could accurately predict the protective effect of vaccines in humans. Here, we review the role of zebrafish (Danio rerio) and other fish models in the development of novel vaccines against tuberculosis and discuss how these models complement the more traditional mammalian models of tuberculosis. |
format | Online Article Text |
id | pubmed-7473647 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | The Company of Biologists Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-74736472020-09-08 Integrating fish models in tuberculosis vaccine development Saralahti, Anni K. Uusi-Mäkelä, Meri I. E. Niskanen, Mirja T. Rämet, Mika Dis Model Mech Review Tuberculosis is a chronic infection by Mycobacterium tuberculosis that results in over 1.5 million deaths worldwide each year. Currently, there is only one vaccine against tuberculosis, the Bacillus Calmette–Guérin (BCG) vaccine. Despite widespread vaccination programmes, over 10 million new M. tuberculosis infections are diagnosed yearly, with almost half a million cases caused by antibiotic-resistant strains. Novel vaccination strategies concentrate mainly on replacing BCG or boosting its efficacy and depend on animal models that accurately recapitulate the human disease. However, efforts to produce new vaccines against an M. tuberculosis infection have encountered several challenges, including the complexity of M. tuberculosis pathogenesis and limited knowledge of the protective immune responses. The preclinical evaluation of novel tuberculosis vaccine candidates is also hampered by the lack of an appropriate animal model that could accurately predict the protective effect of vaccines in humans. Here, we review the role of zebrafish (Danio rerio) and other fish models in the development of novel vaccines against tuberculosis and discuss how these models complement the more traditional mammalian models of tuberculosis. The Company of Biologists Ltd 2020-08-24 /pmc/articles/PMC7473647/ /pubmed/32859577 http://dx.doi.org/10.1242/dmm.045716 Text en © 2020. Published by The Company of Biologists Ltd http://creativecommons.org/licenses/by/4.0This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. |
spellingShingle | Review Saralahti, Anni K. Uusi-Mäkelä, Meri I. E. Niskanen, Mirja T. Rämet, Mika Integrating fish models in tuberculosis vaccine development |
title | Integrating fish models in tuberculosis vaccine development |
title_full | Integrating fish models in tuberculosis vaccine development |
title_fullStr | Integrating fish models in tuberculosis vaccine development |
title_full_unstemmed | Integrating fish models in tuberculosis vaccine development |
title_short | Integrating fish models in tuberculosis vaccine development |
title_sort | integrating fish models in tuberculosis vaccine development |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7473647/ https://www.ncbi.nlm.nih.gov/pubmed/32859577 http://dx.doi.org/10.1242/dmm.045716 |
work_keys_str_mv | AT saralahtiannik integratingfishmodelsintuberculosisvaccinedevelopment AT uusimakelameriie integratingfishmodelsintuberculosisvaccinedevelopment AT niskanenmirjat integratingfishmodelsintuberculosisvaccinedevelopment AT rametmika integratingfishmodelsintuberculosisvaccinedevelopment |