Cargando…
Characterization of the different oligomeric states of the DAN family antagonists SOSTDC1 and SOST
The DAN (differential screening-selected gene aberrative in neuroblastoma) family are a group of secreted extracellular proteins which typically bind to and antagonize BMP (bone morphogenetic protein) ligands. Previous studies have revealed discrepancies between the oligomerization state of certain...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Portland Press Ltd.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7473711/ https://www.ncbi.nlm.nih.gov/pubmed/32779697 http://dx.doi.org/10.1042/BCJ20200552 |
Sumario: | The DAN (differential screening-selected gene aberrative in neuroblastoma) family are a group of secreted extracellular proteins which typically bind to and antagonize BMP (bone morphogenetic protein) ligands. Previous studies have revealed discrepancies between the oligomerization state of certain DAN family members, with SOST (a poor antagonist of BMP signaling) forming a monomer while Grem1, Grem2, and NBL1 (more potent BMP antagonists) form non-disulfide linked dimers. The protein SOSTDC1 (Sclerostin domain containing protein 1) is sequentially similar to SOST, but has been shown to be a better BMP inhibitor. In order to determine the oligomerization state of SOSTDC1 and determine what effect dimerization might have on the mechanism of DAN family antagonism of BMP signaling, we isolated the SOSTDC1 protein and, using a battery of biophysical, biochemical, and structural techniques, showed that SOSTDC1 forms a highly stable non-covalent dimer. Additionally, this SOSTDC1 dimer was shown, using an in vitro cell based assay system, to be an inhibitor of multiple BMP signaling growth factors, including GDF5, while monomeric SOST was a very poor antagonist. These results demonstrate that SOSTDC1 is distinct from paralogue SOST in terms of both oligomerization and strength of BMP inhibition. |
---|