Cargando…

Unprecedented reduction and quick recovery of the South Indian Ocean heat content and sea level in 2014–2018

Following the onset of the strong 2014–2016 El Niño, a decade-long increase of the basin-wide sea level and heat content in the subtropical southern Indian Ocean (SIO) in 2004–2013 ended with an unprecedented drop, which quickly recovered during the weak 2017–2018 La Niña. Here, we show that the 201...

Descripción completa

Detalles Bibliográficos
Autores principales: Volkov, Denis L., Lee, Sang-Ki, Gordon, Arnold L., Rudko, Michael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7473749/
https://www.ncbi.nlm.nih.gov/pubmed/32917620
http://dx.doi.org/10.1126/sciadv.abc1151
Descripción
Sumario:Following the onset of the strong 2014–2016 El Niño, a decade-long increase of the basin-wide sea level and heat content in the subtropical southern Indian Ocean (SIO) in 2004–2013 ended with an unprecedented drop, which quickly recovered during the weak 2017–2018 La Niña. Here, we show that the 2014–2016 El Niño contributed to the observed cooling through an unusual combination of both the reduced heat advection from the Pacific (dominant in the eastern SIO) and the basin-wide cyclonic wind anomaly that led to shoaling of isotherms (dominant in the western SIO). The ensuing recovery was mainly forced by an anticyclonic wind anomaly associated with stronger trade winds that caused deepening of isotherms and upper-ocean warming, effectively suppressing the 2014–2016 cooling signal propagating from the eastern boundary. The results presented here highlight the complexity of the SIO heat content variability driven by remote and local forcing.