Cargando…
Using structural MRI to identify bipolar disorders – 13 site machine learning study in 3020 individuals from the ENIGMA Bipolar Disorders Working Group
Bipolar disorders (BDs) are among the leading causes of morbidity and disability. Objective biological markers, such as those based on brain imaging, could aid in clinical management of BD. Machine learning (ML) brings neuroimaging analyses to individual subject level and may potentially allow for t...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7473838/ https://www.ncbi.nlm.nih.gov/pubmed/30171211 http://dx.doi.org/10.1038/s41380-018-0228-9 |
_version_ | 1783579245052690432 |
---|---|
author | Nunes, Abraham Schnack, Hugo G. Ching, Christopher R. K. Agartz, Ingrid Akudjedu, Theophilus N. Alda, Martin Alnæs, Dag Alonso-Lana, Silvia Bauer, Jochen Baune, Bernhard T. Bøen, Erlend Bonnin, Caterina del Mar Busatto, Geraldo F. Canales-Rodríguez, Erick J. Cannon, Dara M. Caseras, Xavier Chaim-Avancini, Tiffany M. Dannlowski, Udo Díaz-Zuluaga, Ana M. Dietsche, Bruno Doan, Nhat Trung Duchesnay, Edouard Elvsåshagen, Torbjørn Emden, Daniel Eyler, Lisa T. Fatjó-Vilas, Mar Favre, Pauline Foley, Sonya F. Fullerton, Janice M. Glahn, David C. Goikolea, Jose M. Grotegerd, Dominik Hahn, Tim Henry, Chantal Hibar, Derrek P. Houenou, Josselin Howells, Fleur M. Jahanshad, Neda Kaufmann, Tobias Kenney, Joanne Kircher, Tilo T. J. Krug, Axel Lagerberg, Trine V. Lenroot, Rhoshel K. López-Jaramillo, Carlos Machado-Vieira, Rodrigo Malt, Ulrik F. McDonald, Colm Mitchell, Philip B. Mwangi, Benson Nabulsi, Leila Opel, Nils Overs, Bronwyn J. Pineda-Zapata, Julian A. Pomarol-Clotet, Edith Redlich, Ronny Roberts, Gloria Rosa, Pedro G. Salvador, Raymond Satterthwaite, Theodore D. Soares, Jair C. Stein, Dan J. Temmingh, Henk S. Trappenberg, Thomas Uhlmann, Anne van Haren, Neeltje E. M. Vieta, Eduard Westlye, Lars T. Wolf, Daniel H. Yüksel, Dilara Zanetti, Marcus V. Andreassen, Ole A. Thompson, Paul M. Hajek, Tomas |
author_facet | Nunes, Abraham Schnack, Hugo G. Ching, Christopher R. K. Agartz, Ingrid Akudjedu, Theophilus N. Alda, Martin Alnæs, Dag Alonso-Lana, Silvia Bauer, Jochen Baune, Bernhard T. Bøen, Erlend Bonnin, Caterina del Mar Busatto, Geraldo F. Canales-Rodríguez, Erick J. Cannon, Dara M. Caseras, Xavier Chaim-Avancini, Tiffany M. Dannlowski, Udo Díaz-Zuluaga, Ana M. Dietsche, Bruno Doan, Nhat Trung Duchesnay, Edouard Elvsåshagen, Torbjørn Emden, Daniel Eyler, Lisa T. Fatjó-Vilas, Mar Favre, Pauline Foley, Sonya F. Fullerton, Janice M. Glahn, David C. Goikolea, Jose M. Grotegerd, Dominik Hahn, Tim Henry, Chantal Hibar, Derrek P. Houenou, Josselin Howells, Fleur M. Jahanshad, Neda Kaufmann, Tobias Kenney, Joanne Kircher, Tilo T. J. Krug, Axel Lagerberg, Trine V. Lenroot, Rhoshel K. López-Jaramillo, Carlos Machado-Vieira, Rodrigo Malt, Ulrik F. McDonald, Colm Mitchell, Philip B. Mwangi, Benson Nabulsi, Leila Opel, Nils Overs, Bronwyn J. Pineda-Zapata, Julian A. Pomarol-Clotet, Edith Redlich, Ronny Roberts, Gloria Rosa, Pedro G. Salvador, Raymond Satterthwaite, Theodore D. Soares, Jair C. Stein, Dan J. Temmingh, Henk S. Trappenberg, Thomas Uhlmann, Anne van Haren, Neeltje E. M. Vieta, Eduard Westlye, Lars T. Wolf, Daniel H. Yüksel, Dilara Zanetti, Marcus V. Andreassen, Ole A. Thompson, Paul M. Hajek, Tomas |
author_sort | Nunes, Abraham |
collection | PubMed |
description | Bipolar disorders (BDs) are among the leading causes of morbidity and disability. Objective biological markers, such as those based on brain imaging, could aid in clinical management of BD. Machine learning (ML) brings neuroimaging analyses to individual subject level and may potentially allow for their diagnostic use. However, fair and optimal application of ML requires large, multi-site datasets. We applied ML (support vector machines) to MRI data (regional cortical thickness, surface area, subcortical volumes) from 853 BD and 2167 control participants from 13 cohorts in the ENIGMA consortium. We attempted to differentiate BD from control participants, investigated different data handling strategies and studied the neuroimaging/clinical features most important for classification. Individual site accuracies ranged from 45.23% to 81.07%. Aggregate subject-level analyses yielded the highest accuracy (65.23%, 95% CI = 63.47–67.00, ROC-AUC = 71.49%, 95% CI = 69.39–73.59), followed by leave-one-site-out cross-validation (accuracy = 58.67%, 95% CI = 56.70–60.63). Meta-analysis of individual site accuracies did not provide above chance results. There was substantial agreement between the regions that contributed to identification of BD participants in the best performing site and in the aggregate dataset (Cohen’s Kappa = 0.83, 95% CI = 0.829–0.831). Treatment with anticonvulsants and age were associated with greater odds of correct classification. Although short of the 80% clinically relevant accuracy threshold, the results are promising and provide a fair and realistic estimate of classification performance, which can be achieved in a large, ecologically valid, multi-site sample of BD participants based on regional neurostructural measures. Furthermore, the significant classification in different samples was based on plausible and similar neuroanatomical features. Future multi-site studies should move towards sharing of raw/voxelwise neuroimaging data. |
format | Online Article Text |
id | pubmed-7473838 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-74738382020-09-16 Using structural MRI to identify bipolar disorders – 13 site machine learning study in 3020 individuals from the ENIGMA Bipolar Disorders Working Group Nunes, Abraham Schnack, Hugo G. Ching, Christopher R. K. Agartz, Ingrid Akudjedu, Theophilus N. Alda, Martin Alnæs, Dag Alonso-Lana, Silvia Bauer, Jochen Baune, Bernhard T. Bøen, Erlend Bonnin, Caterina del Mar Busatto, Geraldo F. Canales-Rodríguez, Erick J. Cannon, Dara M. Caseras, Xavier Chaim-Avancini, Tiffany M. Dannlowski, Udo Díaz-Zuluaga, Ana M. Dietsche, Bruno Doan, Nhat Trung Duchesnay, Edouard Elvsåshagen, Torbjørn Emden, Daniel Eyler, Lisa T. Fatjó-Vilas, Mar Favre, Pauline Foley, Sonya F. Fullerton, Janice M. Glahn, David C. Goikolea, Jose M. Grotegerd, Dominik Hahn, Tim Henry, Chantal Hibar, Derrek P. Houenou, Josselin Howells, Fleur M. Jahanshad, Neda Kaufmann, Tobias Kenney, Joanne Kircher, Tilo T. J. Krug, Axel Lagerberg, Trine V. Lenroot, Rhoshel K. López-Jaramillo, Carlos Machado-Vieira, Rodrigo Malt, Ulrik F. McDonald, Colm Mitchell, Philip B. Mwangi, Benson Nabulsi, Leila Opel, Nils Overs, Bronwyn J. Pineda-Zapata, Julian A. Pomarol-Clotet, Edith Redlich, Ronny Roberts, Gloria Rosa, Pedro G. Salvador, Raymond Satterthwaite, Theodore D. Soares, Jair C. Stein, Dan J. Temmingh, Henk S. Trappenberg, Thomas Uhlmann, Anne van Haren, Neeltje E. M. Vieta, Eduard Westlye, Lars T. Wolf, Daniel H. Yüksel, Dilara Zanetti, Marcus V. Andreassen, Ole A. Thompson, Paul M. Hajek, Tomas Mol Psychiatry Article Bipolar disorders (BDs) are among the leading causes of morbidity and disability. Objective biological markers, such as those based on brain imaging, could aid in clinical management of BD. Machine learning (ML) brings neuroimaging analyses to individual subject level and may potentially allow for their diagnostic use. However, fair and optimal application of ML requires large, multi-site datasets. We applied ML (support vector machines) to MRI data (regional cortical thickness, surface area, subcortical volumes) from 853 BD and 2167 control participants from 13 cohorts in the ENIGMA consortium. We attempted to differentiate BD from control participants, investigated different data handling strategies and studied the neuroimaging/clinical features most important for classification. Individual site accuracies ranged from 45.23% to 81.07%. Aggregate subject-level analyses yielded the highest accuracy (65.23%, 95% CI = 63.47–67.00, ROC-AUC = 71.49%, 95% CI = 69.39–73.59), followed by leave-one-site-out cross-validation (accuracy = 58.67%, 95% CI = 56.70–60.63). Meta-analysis of individual site accuracies did not provide above chance results. There was substantial agreement between the regions that contributed to identification of BD participants in the best performing site and in the aggregate dataset (Cohen’s Kappa = 0.83, 95% CI = 0.829–0.831). Treatment with anticonvulsants and age were associated with greater odds of correct classification. Although short of the 80% clinically relevant accuracy threshold, the results are promising and provide a fair and realistic estimate of classification performance, which can be achieved in a large, ecologically valid, multi-site sample of BD participants based on regional neurostructural measures. Furthermore, the significant classification in different samples was based on plausible and similar neuroanatomical features. Future multi-site studies should move towards sharing of raw/voxelwise neuroimaging data. Nature Publishing Group UK 2018-08-31 2020 /pmc/articles/PMC7473838/ /pubmed/30171211 http://dx.doi.org/10.1038/s41380-018-0228-9 Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Nunes, Abraham Schnack, Hugo G. Ching, Christopher R. K. Agartz, Ingrid Akudjedu, Theophilus N. Alda, Martin Alnæs, Dag Alonso-Lana, Silvia Bauer, Jochen Baune, Bernhard T. Bøen, Erlend Bonnin, Caterina del Mar Busatto, Geraldo F. Canales-Rodríguez, Erick J. Cannon, Dara M. Caseras, Xavier Chaim-Avancini, Tiffany M. Dannlowski, Udo Díaz-Zuluaga, Ana M. Dietsche, Bruno Doan, Nhat Trung Duchesnay, Edouard Elvsåshagen, Torbjørn Emden, Daniel Eyler, Lisa T. Fatjó-Vilas, Mar Favre, Pauline Foley, Sonya F. Fullerton, Janice M. Glahn, David C. Goikolea, Jose M. Grotegerd, Dominik Hahn, Tim Henry, Chantal Hibar, Derrek P. Houenou, Josselin Howells, Fleur M. Jahanshad, Neda Kaufmann, Tobias Kenney, Joanne Kircher, Tilo T. J. Krug, Axel Lagerberg, Trine V. Lenroot, Rhoshel K. López-Jaramillo, Carlos Machado-Vieira, Rodrigo Malt, Ulrik F. McDonald, Colm Mitchell, Philip B. Mwangi, Benson Nabulsi, Leila Opel, Nils Overs, Bronwyn J. Pineda-Zapata, Julian A. Pomarol-Clotet, Edith Redlich, Ronny Roberts, Gloria Rosa, Pedro G. Salvador, Raymond Satterthwaite, Theodore D. Soares, Jair C. Stein, Dan J. Temmingh, Henk S. Trappenberg, Thomas Uhlmann, Anne van Haren, Neeltje E. M. Vieta, Eduard Westlye, Lars T. Wolf, Daniel H. Yüksel, Dilara Zanetti, Marcus V. Andreassen, Ole A. Thompson, Paul M. Hajek, Tomas Using structural MRI to identify bipolar disorders – 13 site machine learning study in 3020 individuals from the ENIGMA Bipolar Disorders Working Group |
title | Using structural MRI to identify bipolar disorders – 13 site machine learning study in 3020 individuals from the ENIGMA Bipolar Disorders Working Group |
title_full | Using structural MRI to identify bipolar disorders – 13 site machine learning study in 3020 individuals from the ENIGMA Bipolar Disorders Working Group |
title_fullStr | Using structural MRI to identify bipolar disorders – 13 site machine learning study in 3020 individuals from the ENIGMA Bipolar Disorders Working Group |
title_full_unstemmed | Using structural MRI to identify bipolar disorders – 13 site machine learning study in 3020 individuals from the ENIGMA Bipolar Disorders Working Group |
title_short | Using structural MRI to identify bipolar disorders – 13 site machine learning study in 3020 individuals from the ENIGMA Bipolar Disorders Working Group |
title_sort | using structural mri to identify bipolar disorders – 13 site machine learning study in 3020 individuals from the enigma bipolar disorders working group |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7473838/ https://www.ncbi.nlm.nih.gov/pubmed/30171211 http://dx.doi.org/10.1038/s41380-018-0228-9 |
work_keys_str_mv | AT nunesabraham usingstructuralmritoidentifybipolardisorders13sitemachinelearningstudyin3020individualsfromtheenigmabipolardisordersworkinggroup AT schnackhugog usingstructuralmritoidentifybipolardisorders13sitemachinelearningstudyin3020individualsfromtheenigmabipolardisordersworkinggroup AT chingchristopherrk usingstructuralmritoidentifybipolardisorders13sitemachinelearningstudyin3020individualsfromtheenigmabipolardisordersworkinggroup AT agartzingrid usingstructuralmritoidentifybipolardisorders13sitemachinelearningstudyin3020individualsfromtheenigmabipolardisordersworkinggroup AT akudjedutheophilusn usingstructuralmritoidentifybipolardisorders13sitemachinelearningstudyin3020individualsfromtheenigmabipolardisordersworkinggroup AT aldamartin usingstructuralmritoidentifybipolardisorders13sitemachinelearningstudyin3020individualsfromtheenigmabipolardisordersworkinggroup AT alnæsdag usingstructuralmritoidentifybipolardisorders13sitemachinelearningstudyin3020individualsfromtheenigmabipolardisordersworkinggroup AT alonsolanasilvia usingstructuralmritoidentifybipolardisorders13sitemachinelearningstudyin3020individualsfromtheenigmabipolardisordersworkinggroup AT bauerjochen usingstructuralmritoidentifybipolardisorders13sitemachinelearningstudyin3020individualsfromtheenigmabipolardisordersworkinggroup AT baunebernhardt usingstructuralmritoidentifybipolardisorders13sitemachinelearningstudyin3020individualsfromtheenigmabipolardisordersworkinggroup AT bøenerlend usingstructuralmritoidentifybipolardisorders13sitemachinelearningstudyin3020individualsfromtheenigmabipolardisordersworkinggroup AT bonnincaterinadelmar usingstructuralmritoidentifybipolardisorders13sitemachinelearningstudyin3020individualsfromtheenigmabipolardisordersworkinggroup AT busattogeraldof usingstructuralmritoidentifybipolardisorders13sitemachinelearningstudyin3020individualsfromtheenigmabipolardisordersworkinggroup AT canalesrodriguezerickj usingstructuralmritoidentifybipolardisorders13sitemachinelearningstudyin3020individualsfromtheenigmabipolardisordersworkinggroup AT cannondaram usingstructuralmritoidentifybipolardisorders13sitemachinelearningstudyin3020individualsfromtheenigmabipolardisordersworkinggroup AT caserasxavier usingstructuralmritoidentifybipolardisorders13sitemachinelearningstudyin3020individualsfromtheenigmabipolardisordersworkinggroup AT chaimavancinitiffanym usingstructuralmritoidentifybipolardisorders13sitemachinelearningstudyin3020individualsfromtheenigmabipolardisordersworkinggroup AT dannlowskiudo usingstructuralmritoidentifybipolardisorders13sitemachinelearningstudyin3020individualsfromtheenigmabipolardisordersworkinggroup AT diazzuluagaanam usingstructuralmritoidentifybipolardisorders13sitemachinelearningstudyin3020individualsfromtheenigmabipolardisordersworkinggroup AT dietschebruno usingstructuralmritoidentifybipolardisorders13sitemachinelearningstudyin3020individualsfromtheenigmabipolardisordersworkinggroup AT doannhattrung usingstructuralmritoidentifybipolardisorders13sitemachinelearningstudyin3020individualsfromtheenigmabipolardisordersworkinggroup AT duchesnayedouard usingstructuralmritoidentifybipolardisorders13sitemachinelearningstudyin3020individualsfromtheenigmabipolardisordersworkinggroup AT elvsashagentorbjørn usingstructuralmritoidentifybipolardisorders13sitemachinelearningstudyin3020individualsfromtheenigmabipolardisordersworkinggroup AT emdendaniel usingstructuralmritoidentifybipolardisorders13sitemachinelearningstudyin3020individualsfromtheenigmabipolardisordersworkinggroup AT eylerlisat usingstructuralmritoidentifybipolardisorders13sitemachinelearningstudyin3020individualsfromtheenigmabipolardisordersworkinggroup AT fatjovilasmar usingstructuralmritoidentifybipolardisorders13sitemachinelearningstudyin3020individualsfromtheenigmabipolardisordersworkinggroup AT favrepauline usingstructuralmritoidentifybipolardisorders13sitemachinelearningstudyin3020individualsfromtheenigmabipolardisordersworkinggroup AT foleysonyaf usingstructuralmritoidentifybipolardisorders13sitemachinelearningstudyin3020individualsfromtheenigmabipolardisordersworkinggroup AT fullertonjanicem usingstructuralmritoidentifybipolardisorders13sitemachinelearningstudyin3020individualsfromtheenigmabipolardisordersworkinggroup AT glahndavidc usingstructuralmritoidentifybipolardisorders13sitemachinelearningstudyin3020individualsfromtheenigmabipolardisordersworkinggroup AT goikoleajosem usingstructuralmritoidentifybipolardisorders13sitemachinelearningstudyin3020individualsfromtheenigmabipolardisordersworkinggroup AT grotegerddominik usingstructuralmritoidentifybipolardisorders13sitemachinelearningstudyin3020individualsfromtheenigmabipolardisordersworkinggroup AT hahntim usingstructuralmritoidentifybipolardisorders13sitemachinelearningstudyin3020individualsfromtheenigmabipolardisordersworkinggroup AT henrychantal usingstructuralmritoidentifybipolardisorders13sitemachinelearningstudyin3020individualsfromtheenigmabipolardisordersworkinggroup AT hibarderrekp usingstructuralmritoidentifybipolardisorders13sitemachinelearningstudyin3020individualsfromtheenigmabipolardisordersworkinggroup AT houenoujosselin usingstructuralmritoidentifybipolardisorders13sitemachinelearningstudyin3020individualsfromtheenigmabipolardisordersworkinggroup AT howellsfleurm usingstructuralmritoidentifybipolardisorders13sitemachinelearningstudyin3020individualsfromtheenigmabipolardisordersworkinggroup AT jahanshadneda usingstructuralmritoidentifybipolardisorders13sitemachinelearningstudyin3020individualsfromtheenigmabipolardisordersworkinggroup AT kaufmanntobias usingstructuralmritoidentifybipolardisorders13sitemachinelearningstudyin3020individualsfromtheenigmabipolardisordersworkinggroup AT kenneyjoanne usingstructuralmritoidentifybipolardisorders13sitemachinelearningstudyin3020individualsfromtheenigmabipolardisordersworkinggroup AT kirchertilotj usingstructuralmritoidentifybipolardisorders13sitemachinelearningstudyin3020individualsfromtheenigmabipolardisordersworkinggroup AT krugaxel usingstructuralmritoidentifybipolardisorders13sitemachinelearningstudyin3020individualsfromtheenigmabipolardisordersworkinggroup AT lagerbergtrinev usingstructuralmritoidentifybipolardisorders13sitemachinelearningstudyin3020individualsfromtheenigmabipolardisordersworkinggroup AT lenrootrhoshelk usingstructuralmritoidentifybipolardisorders13sitemachinelearningstudyin3020individualsfromtheenigmabipolardisordersworkinggroup AT lopezjaramillocarlos usingstructuralmritoidentifybipolardisorders13sitemachinelearningstudyin3020individualsfromtheenigmabipolardisordersworkinggroup AT machadovieirarodrigo usingstructuralmritoidentifybipolardisorders13sitemachinelearningstudyin3020individualsfromtheenigmabipolardisordersworkinggroup AT maltulrikf usingstructuralmritoidentifybipolardisorders13sitemachinelearningstudyin3020individualsfromtheenigmabipolardisordersworkinggroup AT mcdonaldcolm usingstructuralmritoidentifybipolardisorders13sitemachinelearningstudyin3020individualsfromtheenigmabipolardisordersworkinggroup AT mitchellphilipb usingstructuralmritoidentifybipolardisorders13sitemachinelearningstudyin3020individualsfromtheenigmabipolardisordersworkinggroup AT mwangibenson usingstructuralmritoidentifybipolardisorders13sitemachinelearningstudyin3020individualsfromtheenigmabipolardisordersworkinggroup AT nabulsileila usingstructuralmritoidentifybipolardisorders13sitemachinelearningstudyin3020individualsfromtheenigmabipolardisordersworkinggroup AT opelnils usingstructuralmritoidentifybipolardisorders13sitemachinelearningstudyin3020individualsfromtheenigmabipolardisordersworkinggroup AT oversbronwynj usingstructuralmritoidentifybipolardisorders13sitemachinelearningstudyin3020individualsfromtheenigmabipolardisordersworkinggroup AT pinedazapatajuliana usingstructuralmritoidentifybipolardisorders13sitemachinelearningstudyin3020individualsfromtheenigmabipolardisordersworkinggroup AT pomarolclotetedith usingstructuralmritoidentifybipolardisorders13sitemachinelearningstudyin3020individualsfromtheenigmabipolardisordersworkinggroup AT redlichronny usingstructuralmritoidentifybipolardisorders13sitemachinelearningstudyin3020individualsfromtheenigmabipolardisordersworkinggroup AT robertsgloria usingstructuralmritoidentifybipolardisorders13sitemachinelearningstudyin3020individualsfromtheenigmabipolardisordersworkinggroup AT rosapedrog usingstructuralmritoidentifybipolardisorders13sitemachinelearningstudyin3020individualsfromtheenigmabipolardisordersworkinggroup AT salvadorraymond usingstructuralmritoidentifybipolardisorders13sitemachinelearningstudyin3020individualsfromtheenigmabipolardisordersworkinggroup AT satterthwaitetheodored usingstructuralmritoidentifybipolardisorders13sitemachinelearningstudyin3020individualsfromtheenigmabipolardisordersworkinggroup AT soaresjairc usingstructuralmritoidentifybipolardisorders13sitemachinelearningstudyin3020individualsfromtheenigmabipolardisordersworkinggroup AT steindanj usingstructuralmritoidentifybipolardisorders13sitemachinelearningstudyin3020individualsfromtheenigmabipolardisordersworkinggroup AT temminghhenks usingstructuralmritoidentifybipolardisorders13sitemachinelearningstudyin3020individualsfromtheenigmabipolardisordersworkinggroup AT trappenbergthomas usingstructuralmritoidentifybipolardisorders13sitemachinelearningstudyin3020individualsfromtheenigmabipolardisordersworkinggroup AT uhlmannanne usingstructuralmritoidentifybipolardisorders13sitemachinelearningstudyin3020individualsfromtheenigmabipolardisordersworkinggroup AT vanharenneeltjeem usingstructuralmritoidentifybipolardisorders13sitemachinelearningstudyin3020individualsfromtheenigmabipolardisordersworkinggroup AT vietaeduard usingstructuralmritoidentifybipolardisorders13sitemachinelearningstudyin3020individualsfromtheenigmabipolardisordersworkinggroup AT westlyelarst usingstructuralmritoidentifybipolardisorders13sitemachinelearningstudyin3020individualsfromtheenigmabipolardisordersworkinggroup AT wolfdanielh usingstructuralmritoidentifybipolardisorders13sitemachinelearningstudyin3020individualsfromtheenigmabipolardisordersworkinggroup AT yukseldilara usingstructuralmritoidentifybipolardisorders13sitemachinelearningstudyin3020individualsfromtheenigmabipolardisordersworkinggroup AT zanettimarcusv usingstructuralmritoidentifybipolardisorders13sitemachinelearningstudyin3020individualsfromtheenigmabipolardisordersworkinggroup AT andreassenolea usingstructuralmritoidentifybipolardisorders13sitemachinelearningstudyin3020individualsfromtheenigmabipolardisordersworkinggroup AT thompsonpaulm usingstructuralmritoidentifybipolardisorders13sitemachinelearningstudyin3020individualsfromtheenigmabipolardisordersworkinggroup AT hajektomas usingstructuralmritoidentifybipolardisorders13sitemachinelearningstudyin3020individualsfromtheenigmabipolardisordersworkinggroup AT usingstructuralmritoidentifybipolardisorders13sitemachinelearningstudyin3020individualsfromtheenigmabipolardisordersworkinggroup |